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PREFACE

A NASA Symposium on Analytic Methods in Aircraft Aerodynamics was

held at the Ames Research Center on October 28-30, 1969. The symposium was

divided into the following sessions:

I. PRESSURE AND FORCES ON BASIC SHAPES

II.

HI.

FLOW FIELDS

BOUNDARY LAYERS AND SHOCK--BOUNDARY-LAYER

INTERACTIONS

INTERNAL AERODYNAMICS

CONFIGURATION AERODYNAMICS

IVo

V.

Contributions were made by representatives from Ames, Lewis, and

Langley Research Centers, as well as by representatives of the Aerophysics

Research Corporation, Air Vehicle Corporation, Applied Theory, Inc., Grumman

Aerospace Corporation, Nielsen Engineering & Research, Inc., Princeton Univer-

sity, Rutgers University, Stanford University, University of California, and U.S.

Army Aeronautical Research Laboratory.

General discussions of some of the papers, taken from transcript, are

also included.

iii
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SOME RECENT DEVELOPMENTS IN SUBSONIC

LIFTING-SURFACE THEORY

By Siegfried Wagner*

Ames Research Center

N 70 - 2 1 3 52

The objective of the present paper is to develop a general procedure

that allows some flexibility in the choice of the spanwise control-point

locations employed in Multhopp-Truckenbrodt type lifting-surface theories.

In these theories the spanwise distribution of control points where the bound-

ary conditions are fulfilled is fixed and prescribed. This constraint is very

disadvantageous when the theory is applied to wings with a discontinuity in

the spanwise angle-of-attack distribution (e.g., flapped wings, wings with

tip tanks). The present procedure allows one to prescribe two arbitrary

control-point locations for each semispan and distributes the rest of the

control points in an optimal manner.

INTRODUCTION

The most difficult and laborious part of existing lifting-surface

theories is the numerical solution of the singular integral equation that

relates the pressure distribution on the wing to the induced downwash veloc-

ity. In the following study only true lifting-surface theories are discussed;

that means methods in which the wing is represented by a continuous singular-

ity sheet and is not approximately replaced by any system of discrete singu-

larities. Only these true lifting-surface theories will ultimately produce

the best description of the physical flow.

There are various approaches to solving the singular integral equation

of lifting-surface theory, as for instance, discussed by Landahl and Stark

(ref. i). The emphasis of the existing methods is on the two main problems:

finding the functions that represent the unknown pressure distribution func-

tions best and developing quadrature formulas that compute the integrals as

accurately as possible within an acceptable computation time. For instance,

in the kernel-function procedure of Watkins et al. (ref. 2), the spanwise

variation of the pressure is approximated by a power series which allows arbi-

trary spanwise locations of the control points (where the tangential flow con-

dition is fulfilled). The disadvantage of the kernel-function procedure (ref.

2) is that it provides no general optimization of the spanwise control-point

locations. In the methods developed by Multhopp (ref. 5) and Truckenbrodt

(ref. 4) the spanwise variation of the pressure is expressed by Multhopp's

(ref. 5) well-known development of the Lagrangian interpolation formula. This

*NRC-NASA Resident Research Associate



procedure provides an optimal distribution of spanwise control-point locations,

but does not allow the choice of any arbitrary locations. The latter con-

straint is very detrimental for wings with a discontinuity in the spanwise

angle-of-attack distribution. Such discontinuities occur, for instance, on

wings with deflected flaps or with tip tanks and on wing-body combinations (see

fig. i). In these cases the accuracy in fulfilling the boundary conditions

could be increased if some control points could be put at and close to the

discontinuity of the angle-of-attack function.

The objective of the current study is to develop a general procedure that

allows some flexibility in the spanwise location of the control points so that

they can be positioned in an optimal manner for the particular wing configura-

tion being studied. In the current investigation the procedure of reference 6,

which is an extension and an improvement of the original theories of Multhopp

(ref. 3) and Truckenbrodt (ref. 4), is modified to optimize the spanwise

control-point locations for wings with discontinuities in the spanwise

angle-of-attack distribution.

NOMENCLATURE

A

b

cCn)

Cm( )

CnCn)

CL

A%

c
r

fn(n)

g(E,n,n')

hn(X)

2

b 2

aspect ratio, _-

wing span, 2s

local streamwise chord

local lift coefficient

local pitching-moment coefficient about local quarter chord

spanwise pressure distribution functions

lift

lift coefficient, _

incremental pressure coefficient, Ap
%

root chord

dimensionless spanwise pressure distribution functions,

cn(n)c(n)
2b

N

Hn(_, n ,n ')fn(n ')

n=O

chordwise pressure distribution functions



H CX,Y)
n

Kn(_p,nv,n')

M

N

_p

%

s

S

x,y,x',y'

X

8

O

_,n,_

influence functions

Hn(_p,nv,n v) - Hn(_p,nv,n')

Mach number or number of spanwise control sections

N + 1 equals number of chordwise control points

lifting pressure, Plower - Pupper

dynamic pressure

wing semispan

total wing area

Cartesian coordinates [see fig. 2)

x - X£e

C

y - y'
C

Prandtl-Glauert compressibility factor, (I - M2) I/2

trigonometric variable for spanwise quadrature

b
Cartesian coordinates made dimensionless with respect to

coordinates of the control points

ac aerodynamic center

exp experiment

£e leading edge

te trailing edge

th theory

Subscripts
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INTEGRAL EQUATION OF LIFTING-SURFACE THEORY FOR CALCULATING

THE PRESSURE DISTRIBUTION OF WINGS

When the tangential flow condition along the surface of the wing is

fulfilled, the following singular integral equation of lifting-surface theory

is obtained:

i i'+ll _te ACp(E''n') {i + E-E'_-- } dE' dn'
a((,q) = - _ (rl - q,)2 [(( _ Ej,)2 + 82(n _ n,)2]1/2

-I E£e (I)

This integral contains a strong singularity at n + n' and has to be

defined by (see ref. 6):

g(E,q,q') dn' = lira g(_;,q,rl') dq'

1 (_ - ,l') 2 c+o (r, - r,') 2
(E£e < E =< Ete)

(2a)

where

fi' : ?_"g(_,n,n' dn' = g(E,n,n') dn'

_ (,1 - n') 1 (,1 - ,l') e
(E = _9,,e) (2b)

dq' = dn' + .

1 1 +e

. dn' (3a)

and

dn (_i)i2 i i dn

(y - n)i+i/2 = _- y . (y - n) 1/2

-2

(2i - l)(y - a) i-I/2

Ca < y , i = 1, 2, . .) (3b)

The wing geometry and coordinate system used are illustrated in figure 2.

4



If it is assumed that the pressure distribution can be represented by a

linear combination of chordwise and spanwise pressure modes (see refs. 2, 3)

4, and 6)

N

2b
_ . hn(_) fn(n)_Cp(_,n) = cgg)
n=0

(4)

the integration of equation (1) in the chordwise direction can be separated

from integration in the spanwise direction:

N ,+i

2_IZi Hn(_'q'q')
n=O -i (n - q,)2 fn(q')dq'

(5a)

where

Hn(_,r_,q' ) = Hn(X,Y )

1

= f0 hn(X') { 1 +

X - X w

[(X - X') 2 + y2]I/2
dX'

(Sb)

b b b8 ,)X- 2cCq') [¢ - g_.e (n')] X' =' - g_e ' 2T(6"U-2c(--'{6D-[¢' (n')] Y = (n - n

(6)

Following the usual assumptions in three-dimensional lifting-surface

theories (see ref. 1), the chordwise pressure modes hn(g) are prescribed by
utilizing the pressure distribution functions of two-dimensional thin-airfoil

theory (see ref. 6):

hn(X) = 7 i - X (7)

The functions Tn are Chebyshev polynomials of the first kind with the

argument 1 - 2X. The chordwise pressure modes hn(X) of equation (7) are

illustrated in figure 3. They satisfy the proper boundary conditions in each

term; namely, they go to infinity as the square root of the distance from the

leading edge, and they go to zero like the square root of the distance"from

the trailing edge. The pressure modes are smooth and continuous except at

11 il- 11 II It II II II II 1t 11 li It II 11 li It I l!



the leading edge and can only be used to represent a smooth and continuous

pressure distribution in the chordwise direction. It should be noted that the

pressure modes of equation (7) cannot describe any pressure peaks that occur,

for instance, along the hinge line of wings with deflected flaps.

SOLUTION OF THE INTEGRAL EQUATION OF LIFTING-SURFACE THEORY

Distribution of Control Points

Because of the great amount of computation, the tangential flow condition

cannot be fulfilled along the whole surface of the wing but only at a

restricted number of points, which are called control points. In the present

study, N + 1 = 5 chordwise control points are used at each of the M = 19

spanwise control sections. The chordwise positions of the control points are

the same as in reference 6, namely,

b

Xp = 2cCn_) [_pCn_) - _£eCn_)] = £N {P = 0, i, . . , N) C8)

It is the objective of the present study to calculate optimal spanwise posi-

tions n_ of the control points for wings with discontinuous angle-of-attack

functions (see fig. 1). A wing with deflected flaps is selected as an example

to discuss the problems and the proposed solutions. For such a configuration

the function _aCn) is constant within the region of the deflected flap {the

flap deflection angle, 6) and is zero elsewhere. To fulfill the boundary con-

ditions accurately, a control point is located at each step of the function

AaCn), that is, at both edges of the flap. In addition, at the edges of the

flaps Aa(_) is defined to be half the flap deflection angle, 6/2. For further

discussion only the symmetric case is considered. Two spanwise positions of

the control points have been defined on each semispan of the wing so far. It

is intended to optimize the spanwisepositions of the rest of the control

points in the following paragraphs.

Because of the assumptions in the previous section regarding the pressure

distribution, the original integral equation of lifting-surface theory (see

eq. (I)) was transformed into a system of integral equations {5). The spanwise

pressure modes fn(n) remained the only unknowns of the system of integral

equations. To solve this system of integral equations the unknown pressure

modes fn(n) are approximated by the following Fourier polynomial:

M

fn(D') = 2_anv sin V@' (9)

_=I
where

an_ = fn(O')sin uO' dO' (10)



and

TIt = COS 0 t (II)

If the spanwise angle-of-attack distribution is smooth and continuous, the

integral of equation (i0) can be evaluated by the following Chebyshev-Gauss

quadrature (see ref. 7):

•I__ f(q) (1 - l]2) -1/2 dn = f(O)dO =-
1

M+I
_ f (Ore) +
=I

f(O) +2 f(_)l

(12a)

where

_m
0 = --
m M+ 1 (m = I, 2, . • ,M) (12b)

Hence
M

;iEany = M 1

m=l

fn (Om) sin vOm

If equation (13) is put into equation (9), Multhopp's well-known version of

the Lagrangian interpolation formula is obtained:

M M

2 Efn(0m) E sin V0m sin uS'fn(e') =M+ 1
m=l V =I

In many procedures (e.g., refs. 3 through 6), the spanwise locations of the

control points are identical with the so-called Gaussian nodes

O = m_ (m = 1 2, M)
qm = cos Om , m M +-----[' ' " '

which result from optimizing the integration stations nk of the Hermite
quadrature (see ref. 7).

(13)

(14)

(lS)

w(n)f(n)dq = Akf(nk) + Bkf' (nk)

k=l k=l

(16)

7



It is well-known that the Hermite formula reduces to the Gaussian quadrature

(for which all coefficients Bk are zero) if the integration stations qk
are identical with the Gaussian nodes. These Gaussian nodes are the zeros of

the orthogonal polynomials over the integration interval (a,b) with respect

to the weight function w(q) which has to be nonnegative in (a,b). If w(D)

changes sign in (a,b), there is no assurance that the zeros of the orthogonal

polynomials will be real or, if so, that they will lie inside (a,b). Since the

Bk are forced to be zero in the Gaussian quadrature rule, this procedure

retains the same precision as the Hermite quadrature but uses half as many

terms.

So far no preassigned abscissas have been discussed. However, in some

applications (e.g., the wing with flaps), it is desirable to prescribe some

abscissas to be involved in a quadrature formula. In this case the Gaussian

nodes are determined as the zeros of the orthogonal polynomials over the inte-

gration interval with respect to the modified weight function

w(n) = w(n) Cn) (17)

where

r

v(n) = n (n - ni) (18)
i=1

is an arbitrary polynomial, whose zeros ni are the preassigned abscissas.
For instance, the weight function of the first integral in equation (12a) is

w(q) = (I - n2) "I/2. The orthogonal polynomials in (-i,+I) with respect to

w(q) are the Chebyshev polynomials of first kind Tn(o ) = cos(n arc cos n).

If both end points n = -i and q = +I are prescribed as integration stations,

v(n) is equal to (q2 _ i). The modified weight function is then

 Cn)= (1- n2)112 (19)

The orthogonal polynomials in (-I,+1) with respect to the weight function of

equation (19) are the Chebyshev polynomials of second kind

Sn(n ) sin[(n + 1)arc cos n]
= sin(arc cos n)

(20)

whose zeros are given in equation (15). No problem occurs when the end

points of the integration interval are prescribed, since _(u) does not change

the sign in (-i,+I). However, for general wing-flap configurations being dis-

cussed here, two additional preassigned abscissas, namely the edges of the

flap, n3,n4, are needed between the edges of each semispan. Therefore, the

new modified weight function

w'Crl) = (1 - r12)l/2(D2 - r132) (rl 2 - r14 2) (21)

usually changes sign within (-I,+I). For that reason there is no assurance

that the Gaussian nodes are located in (-1,+I) or are real as mentioned before.

8



To guarantee acceptable locations of the Gaussian nodes for any flap configura-

tion (location of preassigned abscissas), the Gaussian quadrature rule has to

be modified, according to personal communication with Messrs. David C. Galant

and William P. Jones of the Research Computation Analysis Section, Ames

Research Center:

f(n)(I - n2)

2 M-2 M

j=1 j=3 j=M-I

(22)

where n3 = "OM. 2 and n4 = -DM_ 3 are the spanwise locations of the outboard

and inboard edges of the flap, respectively. Mr. Galant was kind enough to

write two computer subroutines which calculate the Gaussian nodes n.

(j = 5, 6, . . . , M - 4) and weights Gj (j = i, 2, . . . , M) for _ny sym-

metric flap-wing configuration.

The spanwise locations n. (v = 5, 4, . . . , M - 2) of the control

points are identical with the _wo preassigned abscissas of each semispan nj

(j = 3, 4, M - 3, M - 2), and with the Gaussian nodes _ (j = 5, 6, . . . ,

M - 4), as illustrated in figure 4. Since the integral 6f equation (i0) is

evaluated by the quadrature rule of equation (22) the spanwise pressure modes

fn(n) are now approximated by ,

fn(n') = R.j_fn'(nj+2) + Rj_fn(_j) + Rj fn,(nj_ 2 sin pO'

p=l .j=1 J=3 j=M-I

where (23)

2 G. sin uO (j = i 2) (24a)
Rip = _ J j+2

2

Rju = _ [Gj sin pOj - Gj.2u cos _Oj/sin Oj] (j = 3, 4) (24b)

Rju = _2 Gj sin UOj (j = 4, 5, . . , M - 4)

(24C)

2

Rjp = _ [Gj sin pOj - Gj+2U cos uOj/sin Oj] (j = M - 5, M - 2) (24d)

Rj = _-2 Gj sin uOj_2 (J = M - i, M) (24e)



If the unknownpressure modes fn(n) of equation {Sa) are replaced by the

aDDroximation polynomials of equation (23), the system of integral equations

(5a) is transformed into a system of linear equations, the unknowns of which

are the values of the pressure modes fn(nj), J = 3, 4, . . . , M - 2, and of

the first derivatives fn'(nj), j = 3, 4, M - 3, M - 2. The number of control

sections qv (v = i, 2, . . . , M) has to be equal to the number of unknown

values of each pressure mode fn, n = 0, i, . . . , N. Since the value of the

first derivative fn'(nj), j = 3, 4, M - 3, M - 2, of each pressure mode is

also used in equation (25), the tangential flow condition has to be fulfilled

at two additional control sections n_ (_ = i, 2, M - i, M) of each semispan

besides the already defined control sections n_ (v = 3, 4, . . , M - 2)

which are identical with the preassigned abscissas and the Gaussian nodes (see

fig. 4). These four additional control-point locations are usually chosen

close to four of the Gaussian nodes to minimize the error when the pressure

modes are approximated by the trigonometric approximation polynomial of

equation (23).

Integration in Chordwise Direction

Since the chordwise pressure modes are prescribed by equation (7), the

chordwise integration of the integral equation (i) is identical with the com-

putation of the influence functions Hn(X,Y) of equation (Sb) that depend on

the geometry of the wing planform and the Mach number only. The influence

functions are evaluated by the same Gaussian quadrature formula used in

reference 6 (eq. (ii)).

Integration in Spanwise Direction

Transforming equation (5a) into a more convenient form (see ref. 6) and

fulfilling the tangential flow condition at the (N + l)N control points

(_p,nv) , one gets the following system of integral equations for the unknown
spanwlse pressure modes fn(n), n = 0, i, . . . , N:

I_ IH I +/II fn(_)dq21 }
_(_p,nv) = _ n=o _io_ n(_p,_,_) 2 fn(_v) - _ (_---_ _ + Inp(nv)

+I

Kn(_p,%,n)Inp(n v) =
_ (nv - n) 2

+i

f tnC_p,%,n)Inp(n _) =

-1 (nv - N) 2

(v = 1, 2, • • , M)

(25a)

fnfn)dn (p = I, 2, . N) (25b)

fn (n) dq (p = O) (25c)
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where

Kn(¢p,%,n) = Hn(¢p,nv,n v) - Hn(_p,n_),n) (26)

To solve this system of integral equations, the technique developed in refer-

ence 6 is applied. However, instead of introducing the interpolation polynomial

of equation (14), the unknown spanwise pressure modes are now approximated by

the polynomial with preassigned abscissas of equation (23). This formula can

he used to evaluate the first integral of equation (25a) analytically:

_ lim fn(ng) - _ : _ ] = bgm%m + b f'c÷0 1 ( 2 _m nm+2
m= 3 m= 1

M

+ E bvmf'nm-2

m=M- 1

(27)

where fnm and fnm are equal to the values and first derivates, respectively,
of the spanwise pressure modes at the locations nm = cos 0m, which are identi-
cal with the preassigned abscissas and the Gaussian nodes of equation (23).
The quadrature coefficients bvm are defined by equations (AS) of the appendix.

The integrals Inp(nv) of equations (25b) and (25c) can be evaluated
immediately using results of reference 6:

InP (nv) = 2_ IAnp_)fn_) _/BnP_m+ + CnP'vm/}film
m= 1

(28)

, and are defined by equations (27),(29),
The coefficients Anpvv , BnP_m CnP_m

and (30) of reference 6. Only one thing has to be changed: the coefficients

sm(ni) and Sm(nj) are not defined anymore by equation (32) of reference 6, but

by equations (A6) of the present paper. In addition, it should be remarked

that fn_ has to be replaced by equation (A7) if the spanwise control-point
location is not identical with one of preassigned abscissas or Gaussian nodes.

From all the results, the following set of linear equations for the

(N + I)M unknowns film and f_m is obtained:

N M

(_p _-_jE( b + DnPvm)Pnma ,qV) = vmHnp_
n=0 m= 1

(v = I, 2, . . . , M; p = 0, I, . , N)

(29)

II
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where

Pnm= f'nm+2 ' if m = I, 2, and
= f' if

Pnm nm-2 ' m = M - I, M

Pnm fm ' if m 3, 4, . ,M-2

D = 6 A +B +C

np_ m _m npw m np_ m np_ m

= Kronecker symbol: 6 = 0 for v # m and
_m _m vm

= 1 for _ = m

RESULTS

To check the accuracy of the present theory, the loading was calculated

for a delta wing (see fig. 5) by the theory of reference 6 and the present

method. The results were compared with measurements.

First, a plain wing with a continuous angle-of-attack distribution was

investigated. In the present method the preassigned abscissas were identical

with those which will be used for the flap-wing configuration. The plots of

fnm, obtained from the system of linear equations, equation (29), depended too

much on the location of the additional control points, which have to be used

besides the Gaussian nodes and preassigned abscissas. However, when these

results of equation (29) were put into equation (A7) and fn(_) was then

plotted by evaluating equation (A7), the curves became stable as long as the

additional control points were close to Gaussian nodes. The only disadvantage

of this procedure is that the curves oscillate a little around the accurate

curve if the pressure modes have a kink. But this is a well-known feature of

trigonometric interpolation polynomials.

In figure 5 the spanwise pressure modes are plotted as computed by the

theory of reference 6 (original theory) and by the present method (extended

theory). Besides those small oscillations discussed in the preceding para-

graph, the results of both methods agree very well with measurements of refer-

ence 8. The values in predicting the lift differ from measurements only -1.1

and -1.3 percent in the original and extended theory, respectively. Even

Xac/Cr is predicted with an error of only -0.6 and -1.7 percent, respectively.

The next question that arises is: How do those oscillations of the

pressure modes predicted by the present method affect the pressure distribu-

tion? Figure 6 is a sketch of a theoretically predicted pressure distribution

on a delta wing. Because of the difficulties in plotting the pressure accu-

rately near the tips of the actual wing, a dimensionless reference area is used

to compare the theoretical pressure distributions with the measured one (see

fig. 7). Figure 7 shows that the differences between the original theory of

reference 6 and the present extended one are negligible. The agreement between

the measurement and the theories is very good except near the leading edge and

near the wing tips. But near the leading edge, a difference between theory and

12



measurementis inevitable since in potential flow theory the pressure goes

to infinity like the square root of the distance from the leading edge, whereas

the physical pressure is finite. It was mentioned in reference 8 that even at

an angle of attack of 4.2 °, an onset of stall was observed near the tips of the

wing. This could be the reason for the differences between measurements and

theory in regions near the wing tips.

The results obtained so far indicate that the concept of the present

method seems to be sound. Therefore, the new method is now applied to a wing

with a discontinuous angle-of-attack distribution for which the present method

was actually developed. The discontinuity in the angle-of-attack distribution

is caused by symmetrically deflected flaps. Now the differences between the

original theory of reference 6 and the present extended method are remarkable

as shown in figure 8. The comparison of both theories with measurements of

reference 9 proves that the extended theory predicts the loading more accu-

rately than the original theory. The errors in calculating the lift are -31.5

and 0.2 percent in the original and extended theory, respectively. The aero-

dynamic center is predicted with an error or -2.0 and -5.2 percent, respec-

tively. The error of the original theory in computing Xac/C r is,

incidentally, smaller than that of the present method since the large error

in predicting the lift was compensated by a similar error in computing the
pitching moment.

Figure 8 contains some additional interesting results. While the pressure

mode fo, which is proportional to the lift distribution, dominates in compari-

son to the higher modes fn (n = 1, 2, . . .) of plain wings (see fig. 5),

this is not true in case of a flap-wing configuration (see fig. 8). The pres-

sure modes are converging toward zero very rapidly with increasing numbers of

n for the plain wing (f4 is not plotted in fig. 5 because it is practically

zero). In figure 8 (wing with flaps) the absolute values of fl, f2, and f3

in most parts of the wing are larger than fo. Only f4 is smaller than fo.

The reason for this behavior of the pressure modes could be that smooth chord-

wise pressure modes (see eq. (7) and fig. 3) have been used which cannot repre-

sent the pressure peak near the hinge line of the flaps. Perhaps, even with

proper chordwise pressure modes, more spanwise and chordwise pressure modes are

needed for wings with flaps to represent the pressure distribution accurately

enough. To answer these questions, chordwise pressure modes that can properly

represent the pressure peak near hinge lines of flaps should be added. They

should be incorporated anyway because the presently used chordwise pressure

modes cannot even approximately represent any pressure distribution of wings

with deflected flaps. Suggestions for such pressure modes can already be

found in references 10 and Ii. In addition, more wings with deflected flaps

should be investigated and compared with measurements. In fact, the whole

concept of linear lifting-surface theory allows only the treatment of low cam-

bered wings. But a flap deflection angle of 59 ° is far beyond that limit• It

could be that the theory is fortunately applicable to high flap deflection

angles or agrees just incidentally well with measurements for the wing config-

uration being investigated. It should also be noted that the present study is

just one possibility for optimizing the control-point locations for arbitrary

flap-wing configurations. There could easily be other and better methods.

13



CONCLUSIONS

A general procedure has been developed to allow the choice of spanwise

control-point locations in Multhopp-Truckenbrodt type lifting-surface theories.

In these methods the spanwise distribution of the control points has been

fixed and prescribed so far. However, this constraint can cause inaccuracies

in fulfilling the boundary conditions, if the theories are applied to wings

with a discontinuity in the spanwise angle-of-attack distribution (e.g.,

flapped wings, wings with tip tanks and wing-body configurations). Therefore,

a procedure has been developed which allows the location of two spanwise con-

trol points at arbitrary positions of each semispan. The rest of the spanwise

control points are then distributed in an optimal manner.

An original method (ref. 6) which is an extension and an improvement of

Multhopp's (ref. 3) and Truckenbrodt's (ref. 4) theories was extended with

respect to the flexibility in the choice of the control-point locations. The

original and extended methods were then used to calculate the loading of a

delta wing with and without flaps. Comparison with measurements showed that

both theories quite accurately predicted the loading of a plain wing without

flaps. On the other hand only the extended method predicted accurately the

lift and aerodynamic center of a flapped wing.

14

Lr



APPENDIX

CALCULATION OF QUADRATURE COEFFICIENTS

/i I fn(q)dq l = _0_T (dfn/d')sin 0 d0_ - %- 0
(AI)

Introducing equation (23) and differentiating with respect to n yields:

I l = Rj En)(nj+ 2) +

j=M-I

ERj_ cos _0 dORj_fn'(nj=2) + fn _ cos O = cos 0

j=3 V

(A2)

The integral can be solved analytically:

_0 cos U0 dO sin u0 v= _ sin 0
cos O - cos Ov v

(A3)

The relationships of equations (24) transform 11 into

z M M-2

I1 = _'=_fn'(nj+2)bvj + E %'(qj_2)bvj + Efn(qj)bvj

j=1 j=M-I j=3

{A4)

where

b
_j

m

G_b_
sin 0 (J = i, 2, M - i, M and 5, 6, . . . , M - 4)

(ASa)

GjbL_ - Gj_2cvj /sin 0_
= sin 0 (J = 3, 4) (A5b)

= } (j = M - 3, M - 2) (A5c)bvJ Gjbvj G}+2cv_ / sin O.
sin 0v
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The coefficients _ and c . are sums over _ and can be evaluated in

closed form: _J _J

M

Eb j = 2 U sin _8 sin _8j
_=I

I{E=-- M M+
2

2 (sin MO
_)

- cos Me
_)

sin e

=M
sin M8

sin MO. +
J

(sin MO cos MS. sin 8. - cos M8 sin MS.

cos 8. - cos 8
J

sin 8 I

_q ei± - cos
cos 8_)sin Me sin MS. - sin 8

• )2
(cos e3 - cos e

sin 8j(1 - cos Me

if e
_)

cos Me j)

J

c j = 2 _U2 sin _% cos _8j

_=i

(2 sin 2 M8 - l)cos % M sin M% cos M8
= M 2 sin M8 cos M8 + + _) _)

9 2 sin 8 sin 2 8

sin 2 M% cos 8

2 sin 3 8

if @ = 8.
J
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M2(cos M8 cos M8. sin 8 + sin M8 sin M8 sin 8 )
c . = M 2 sin M8 cos MS. - _ ) v v J

v2 v ] cos O. - cos O
j v

2M[(I - cos 0 cos 0 )sin MO cos MO. - sin MO. cos MO
+ _ _ _ _ _

{cos O. - COS Or)2J

sin Oj sin Or]

{cos MOv cos MOj - l)sin Or{2 - cos Oj cos 0v

+ sin MOv sin MO.,_ sin Oj(2 - cos O._ cos Ov -

(cos 0j = cos 0_)a

- COS20j_

cos 2 %) /
if 0 # O.

]

If equations {24) are put into equation (23), the summations over
evaluated in closed form:

M

Sm{O) = 2 sin pO m sin uO

_=I

sin MO cos MO cos 0

= M + sin 2 MO - m m m if 8 = 0
m sin 0 m

m

can be

= sin MO sin MO +
m

M

rm(e) = 2

_=I

(sin MO
m

cos _0m sin uO

cos MO sin 0 - sin MO cos MO
m

cos 0 - cos O
m

if

sin Om)

e#o
m

= sin MOm cos MOm(M + O.5/sin 20m) +

I {cos MO cos MOm= M in MO cos MO m +

M{sin 2 MO - O.5)cos O
m m

sin 0
m

if 0 = O
m

sin 0 + sin MO sin MOrn sin Om]]

cos 0 - cos 0
m

(I - cos 0 cos Om)sin MO cos MO - cos MO sin MO sin 0 sin O
+ m m m

(COS 0 - COS Om)2
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where 0 is equal to arc cos n i or arc cos nj. Thus) the coefficients

Sm(n i) or Sm(nj) are obtained from:

i G s" (8) (m = i, 2, M - I, M, and S, 6, . . , M - 4)
Sm(n) = _- m m

(A6a)

1 [ -- Gm=2rm(O) 1Sm(n) = _ GmSm(O) sin 0m '
(m = 3, 4) (A6b)

Sm(r]) = T Gm+2rm(0)s-_n_m]
(m = M - 3, M - 2) (A6c)

Hence,

fn(n) = fnCarc cos n) =

2

ESm(rl) f'rim+2
m=l

M M-2

+ E Sm(n)fnm-2 +E sm{rl)fnm

re=M- 1 m= 3

(A7)
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EXAMPLES FOR SPANWlSE ANGLE-OF-ATTACK
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DISCUSSION

WILLIAM P. RODDEN, Consulting Engineer: I'd like to ask Dr. Wagner and

John Lamar, if he is here from Langley, why we need two more modifications of

Multhopp's method. The vortex lattice method and the doublet lattice method

for the oscillatory case have been demonstrated in the last few years to be

tremendously simple and versatile in terms of the arbitrary types of configura-

tions that can be handled. They also seem to have as much accuracy as is

available from any other method, and they provide solutions when you are not

in a position to guess at the pressure functions, the basic functions needed

by Multhopp and Truckenbrodt.

WAGNER: Well, this question is not very easy to answer, because it is

true that the vortex lattice methods accurately predict in many cases most of

the data a design engineer wants to know. But there are always some cases

where we need a better approximation of the physical flow by a lifting surface

theory. For instance, if you are going to calculate the leading-edge suction

force, it is very difficult to do this with a vortex lattice method because

the pressure distribution is not continuous.

I haven't been working so much with vortex lattice methods, so I can only

answer this question as far as I have gotten answers from communication with

other people. I have learned that these vortex lattice methods are quite

sensitive to the selection of the control-point locations and box sizes.

There are some cases where, if you have not selected these control points or

box sizes properly, the answers might not be very good.

JOSEPH P. GIESING, Douglas Aircraft Company: You mentioned difficulty

in calculating the induced drag distribution by the vortex lattice method.

used the basic approach where you just use Prandtl's basic F = pVXr. We

get very excellent agreement with, say, Garner's results, so we don't need

really to calculate the leading-edge suction.

We

Also, as far as the optimum control point problem (for the lattice

method) is concerned, we believe we have this one worked out. We use one

specific set of control point rules, obtained from two-dimensional analysis,

and this has given us accurate results in all cases that we have tried for

very complicated configurations.

WAGNER: Well, if you have gotten good results, I don't have any objec-

tions. Maybe it is really better to use those vortex lattice methods. If

this is true, why not? Then you can leave all these methods, which are very

complicated, such as this lifting-surface method. I don't have any objections

against that.

ATLEE M. CUNNINGHAM, JR., General Dynamics, Fort Worth Division: I'd

like to say something in support of your method versus the vortex lattice

and doublet lattice methods. Although these collocation type methods are

more complex, once you get the associated problems worked out, in the end I

feel that _:_ese types of methods will give some solutions more efficiently.
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As an example, you could take a configuration where you might require 64

doublet lattice panels to obtain nearly the same solution that you would get

with six control points through the use of a collocation method. So my con-

tention is that although the doublet lattice and vortex panel methods now

allow us to treat more complex cases, in the end I believe we will be able to

arrive at more efficient solutions once we understand more about these assumed

pressure modes and so forth that are required.

I would like to know if you looked at the effect of choosing these off

Gaussian chords, that is, what the effect is on trying to account for the

spanwise singularity?

WAGNER: I didn't quite understand what you mean. What the effect of

the spanwise singularity is, when we are doing what?

CUNNINGHAM: When you are taking these slightly off Gaussian control

points.

WAGNER: Oh, I see. I have done this before, going off of these Gaussian

control points,, and what you usually get is very violent oscillation. So if

you go away from those Gaussian nodes, you cannot guarantee results, because

they depend on the control-point location, and of course this result is not

good to use because you don't know whether you get results from the wing

configuration or from the location of the control points.

CUNNINGHAM: I have been working with this control surface problem and

I have derived a pressure function which also accounts for the chordwise

singularity as well as the spanwise variation and I find it works quite well

using the standard control points (the control points of Hsu, which spanwise

are the same as your spanwise points).

WAGNER: Now, you are talking about chordwise.

CUNNINGHAM: No, I was talking about the spanwise points, the Gaussian

points as you had derived. I found that the chordwise points were more

critical, and that the solution is very sensitive to where these are located.

WAGNER: Well, in my case, I am using as chordwise control points one at

the leading edge, one at the trailing edge; then I am distributing the points

between the leading edge and trailing edge equidistantly.

But I have heard from other people - I was talking to some gentlemen

at Lockheed - and they indicated it would probably be better to distribute

the chordwise location of the control points by the same procedure as we are

using for the spanwise locations. But it is advisable to have a control

point at the leading edge and at the trailing edge, because there is a

paper which was presented by Dr. Jordan I and it indicates that if you are

taking more and more chordwise control points, then the Multhopp procedure

IJordan, P. F.: Remarks on Applied Subsonic Lifting Surface Theory.

Wissenschaftliche Gesellschaft fur Luft-und Raumfahrt, Jahrbuch 1967,

pp. 192-210.
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might diverge if you don't take at the sametime more spanwise control points
and if you are not using the correction for the logarithmic singularities,

whereas if you are using a control point at the leading edge and at the

trailing edge you can prevent this divergence.

GEORGE R. BARTE, JR., General Electric Company: I'd like to add just a

brief historical footnote. In earlier conversations - for the benefit of

those attendees here, I had spent a little time with Dr. Wagner, and at the

time the question of who came up with what method first was discussed briefly.

It turns out that both in England and in Germany, Truckenbrodt and Multhopp

arrived independently at very similar approaches to the question of

calculating wing lift distributions.

In Germany at that time, Multhopp, then with Fockewulf and now with the

General Electric Company, prefers to reserve some of his advanced work for

later publication on the presumption it gives certain advantages in a

competitive industry.
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EDITOR'S COMMENT

Following the first paper of the Symposium by Siegfried N. Wagner,

Joseph P. Giesing of Douglas Aircraft Company asked for time to present

some prepared comments (with figures). He was given ten minutes in which to

present a short progress report on the doublet lattice approach in subsonic

lifting surface theory. The doublet lattice method is an unsteady extension

to the vortex lattice method and is very simple, since it does not require

loading functions. However, it does have important limitations and should

be applied with special care and knowledge, as emphasized by the comments

which follow the prepared slides and written remarks of Giesing.

PREPARED FIGURES AND REMARKS OF JOSEPH P. GIESING,

Douglas Aircraft Company

FIGURE 1

Figure 1 compares the spanwise lift-curve-slope distribution across a

wing-fuselage combination as calculated by Douglas (nonplanar) (ref. 1),

Douglas (planar) (ref. 2), and Woodward (ref. 3). Lifting surface panels

were placed both on the wing and fuselage for the Douglas (nonplanar) and

Woodward methods. The control point on each box in the Woodward method was

selected as the 85-percent point on the basis of two-dimensional calculations.

Woodward, in reference 3, incorrectly suggests the 9S-percent point. The

control point for the Douglas methods, both planar and nonplanar, is at the

7S-percent point of each box. The Douglas nonplanar method and the Woodward

method agree. Slight disagreement between these and the Douglas planar method

is observed however. The Douglas planar method uses an image system within

the fuselage instead of lifting surface elements on the fuselage surface. The

image system eliminates the wing root singularity (the flow is infinite at the

terminus of a lifting surface) and thus is probably more accurate than the

Douglas nonplanar or the Woodward methods for this case.

FIGURE 2

Figure 2 compares the static stability derivatives as calculated by

Douglas (nonplanar) (ref. I) and Belotserkovskii (ref. 4), for annular wings

of various diameter to length ratios.

FIGURE 3

Dynamic stability derivatives for annular wings of various diameter to

length ratios are given in figure 3. The oscillatory aerodynamic method was

evaluated at low values of reduced frequency for these calculations (see

ref. 5).

FIGURE 4

Figure 4 presents calculation for a wing with and without pylons. In

steady flow a comparison is made between the Douglas nonplanar method and the
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method of Blackwell, reference 6. Also shown are calculations done for the

wing oscillating in pitch (about its apex) at a reduced frequency of 0.5.

FIGURE 5

The pressure distributions as calculated by the Douglas nonplanar method

and the method of Zwaan, reference 7, are compared with Experiment. The

T-tail is oscillating in yaw at a frequency of 0.55.

FIGURE 6

The induced drag distribution is not calculated in the usual way by the

Douglas method. Instead of determining the leading-edge suction along with

the normal force drag, the Douglas vortex-doublet lattice method uses the

fundamental Kutta-Joukowski law. The upwash at each bound vortex is deter-

mined and multiplied by the vortex strength to obtain the local contribution

to the induced drag.

Figure 6 compares the spanwise induced drag distribution as calculated by

Douglas and by Garner, reference 8. The agreement is very good except at the

wing tips where Garner's results seem to be ambiguous. The numbers N in

Garner's calculation represent the number of chordwise loading functions used.

It may be remarked that the spanwise distribution of induced drag is very

sensitive to the spanwise loading. Small changes in span load cause large

variations in the induced drag distribution. The total induced drag is,

however, not as sensitive.

FIGURE 7

A comparison of induced drag distribution for a variable sweep configu-

ration as calculated by Wagner, reference 9, and Douglas is given in figure 7.

The distributions do not agree nearly as well as in the hyperbolic wing case.

.
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PRESSURES ON A T-TAIL OSCILLATING IN YAW
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INDUCED DRAG DISTRIBUTION
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DISCUSSION

JACK N. NIELSEN, Nielsen Engineering and Research Inc.: From what I

understood you to say earlier, you indicated that the induced drag you calcu-

late was just as accurate as the induced drag that Siegfried Wagner gets

using his method. I don't know Garner's results with which you compared.

Well, do they treat the leading-edge singularity accurately?

GIESING: Will you show the second to the last slide? Garner showed a

conversion study with various numbers of terms. As you see, n, n2, n3, n_,

that's his conversion study. Garner was putting more chordwise variables to

determine his spanwise --

NIELSEN: The number of chordwise stations is the thing that is important.

You see, the problem is you have to get the strength of the leading-edge

singularity accurately. Depending on how far your nearest control point is

from the leading edge, you get more or less leading-edge suction.

GIESING: Right.

NIELSEN: Therefore, I think that the accuracy of your method basically

depends on how many chordwise panels you put on the wing, but that's not the

case in Wagner's work because he uses the Munk stagger theorem to get the

strength of the leading-edge singularity. So it seems to me there is a basic

advantage to his method.

GIESING: Well, Wagner uses the coefficients of the terms in the chord-

wise series to get the leading-edge suction. That's right.

We do not pretend to get the leading-edge suction at all. We do not get
it. We use the basic Kutta-Joukowski law.

NIELSEN: The strength depends on how close you get your control point

to the leading edge.

GIESING: So does the upwash.

ROBERT T. STANCIL, LTV Aerospace Corp.: That also means that your answer

requires full leading-edge suction.

GIESING: Full leading-edge suction? Yes.

STANCIL: It means that you cannot correlate some percentage of leading-

edge suction or assume no leading-edge suction, is that right?

GIESING: Well, we haven't even thought about it, but on the face of it,

no, you can't.

STANCIL: I think in the real world you never do achieve full leading_

edge suction, but it is significant to know approximately how much or ,whether

there is some peak in it that you would not expect to get in the real world.
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GIESING: I agree.

SIEGFRIED WAGNER: First of all, I would like to say that both of these

methods, the vortex lattice methods and the lifting-surface type methods, have

their significance and are very important. For instance, I have no doubt that

your methods are very well applicable to wing design, and they predict the

lift and the pitching moment reasonably well. Also, these methods are applic-

able to more complicated configurations to which the lifting-surface method,

the continuous distribution of vorticity, is not yet applicable. But the

basic approach of the lifting-surface theory will probably ultimately give

you the best answer because your method depends on the panel size or the posi-

tion of the control points, and I have no doubt that you can arrange these

variables so that you always get fine answers. But there might be questions

in a very small region of the flow field where we have to know the flow field

very accurately, for instance, near the leading edge or near slots of

deflected flaps, and so on. Therefore, we need a better answer, and for this

reason I am working on these lifting-surface theories to develop them to a

point where they can be used as easily as the vortex lattice methods, but we

are far away from this point.

Therefore, I am not going to say that I am replacing all your methods.

I see the significance and importance of your methods. I think the lifting-

surface methods as such are also very important to be studied, and it is

important to continue their development to where they can be as easily

handled as your methods.
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_n_ use OF FINITE ELEMENT METHODS FOR PREDICTING THE

AERODYNAMICS OF WING-BODY COMBINATIONS

By Ralph L. Carmichael and Charles R. Castellano

Ames Research Center

and

Chuan F. Chen

Rutgers University

1_70-21353
J_, aSUMMARY ....

The method of finite elements is a procedure for solving linear partial

differential equations by the superposition of a large number of elementary

solutions in such a way as to approximate the exact boundary conditions.

Computer programs based upon this method are able to predict the subsonic and

supersonic aerodynamic characteristics of wing-body combinations with very

few restrictions on geometry. Comparisons between finite element solutions

and established benchmark solutions indicate that the approximations involved

introduce negligible amounts of error.

INTRODUCTION

The principal objective of this paper is to summarize the principles of

the method of finite elements for solving problems in the external aero-

dynamics of complex configurations in subsonic and supersonic flow. The

method of finite elements is a procedure for solving linear partial differen-

tial equations with complicated boundary conditions by superposing a large

number of elementary solutions in such a way as to approximate the exact

boundary conditions.

The secondary objective is to describe the computer programs developed

by the NASA which enable one to estimate the aerodynamic characteristics of

wing-body combinations. The ultimate objective of this work is to prepare

a collection of procedures of sufficient generality to handle the actual geo-

metrical description of flight vehicles, although the current programs

require a somewhat idealized configuration.

SYMBOLS

aspect ratio

b span

Precedingpageblank
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C local chord

area

Car average chord of wing, span

CDi induced drag

CL lift coefficient

dCL

CL_ d_

C l section lift coefficient

Cm pitching-moment coefficient

dCm

Cm_ d_

ACp pressure on. lower surface - pressure on upperdynamic pressure

CR root chord

M Mach number

q dynamic pressure

y distance coordinate in span direction

angle of attack

¢ rrf_i

A sweep angle

THEORY

Concept of the Method of Finite Elements -

The Airship Problem

One of the first problems in aerodynamics to be studied by theoretical

methods was that of the pressure distribution on an airship (fig. i). Once

the configuration was idealized to a body of revolution at zero angle of

attack, it was found that the flow about the airship could be represented by

a distribution of sources along the axis and that an integral equation could

be written which related this source distribution to the geometry of the air-

ship. For certain simple mathematical shapes, this integral equation could

be solved, and from the resulting source distribution one could compute the
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pressure loading on the airship. A typical solution (for a quadratic varia-
tion of radius) is shown in the lower left of figure 2. The generaI case
remained intractable, however, because of the mathematical difficulties in
treating complicated expressions and because airship dimensions were not
specified by mathematical equations but by tables of coordinates from engi-
neering drawings. Since the exact closed-form solution could not be obtained,
various attempts at approximating the solution were trie4 and the method of
finite elements was one of the most successful of these approximations.

The essential concept of the method of finite elements is illustrated

in the lower right of figure 2. Since the smooth curve representing the
exact solution cannot, in general, be obtained, it is assumed that a simple
function (dashed lines) closedly approximates the smooth function. (Note: a
simple function is defined as one that assumes only a finite set of values.)
This means that we are now representing the physicai boundary of the airship
by a finite number of sources of constant strength instead of a continuous
source distribution.

The mathematical problem of the source distribution of constant
strength can be solved in closed form in terms of elementary functions; hence

the problem is to find the best choice of these finite values of the simple
function in order to approximate the exact solution. This is done by estab-
lishing a set of control points on the body and requiring that the flow be
tangent to the surface at each point. If there are N sources, then there
are N control points and the problem can be formulated as the simultaneous
solution of N linear algebraic equations in N unknowns. With computers,
it is feasible for N to assume quite large values, although it has been our
experience that values of 25 to 50 provide adequate accuracy.

Let us emphasize that the velocities induced by each of the individuai

constant source eIements are exact solutions of the linearized equation of
flow and hence the superposition of all of them is also an exact solution to

the partial differential equation. The approximation that is made is in the
boundary conditions; the flow is required to be tangent to the body only at
the N control points and not at every point on the body surface.

Finite Element Concepts for Configuration Synthesis

The distribution of sources along a line simulates the flow about a

body of revolution at zero angle of attack. For the representation of the
flow about other shapes, there are other basic finite element solutions
(fig. 3). In each case, there is a closed-form solution to the fundamental

linearized equation of flow, either subsonic or supersonic. The line doub-
lets, in conjunction with the line sources, simulate a body of revolution at
angle of attack. The surface elements represent both thickness and lifting
effects of wings. The surface thickness elements are wedges with swept lead-
ing and trailing edges. The surface lifting elements are thin surfaces which
support a constant pressure differential across the surface. Such a surface

is, by its nature, highly warped near the root and tip regions. The combina-
tion of surface thickness and lifting elements simulates the flow about a
thin lifting wing of finite thickness.
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Combination of Finite Elements to Represent a
Wing-Body Combination

By use of the finite element solutions described above, we can describe

components of airplane configurations. As stated previously, the line

sources and doublets represent an isolated lifting body and the surface thick-

ness and lifting elements represent an isolated lifting wing. If the

elements representing these isolated components are placed in close proximity,

as in a wing-body combination, the resultant flow about the body will pene-

trate the wing and vice versa; hence the boundary conditions will be violated.

In order to represent a wing-body combination, it is necessary to use addi-

tional elements to satisfy the boundary conditions in the presence of inter-

fering fields. One method for doing this is to locate surface lifting

elements on the surface of the body [fig. 4) and adjust the pressure across

the wing and body panels simultaneously to insure that there is no mass flow

through the surface of the wing-body combination. If there are N finite

elements, then we establish N control points on the configuration and

require that the net velocity satisfy the boundary condition at each of these

points. In general, the more elements used to represent a configuration, the

greater the accuracy of the solution, and the practical upper limit on the
number of elements is the maximum number of simultaneous linear algebraic

equations that can be solved.

APPLICATION

Comparisons Between Finite Element Method

and Exact Linear Theory

Since this procedure is an approximate method, it is desirable to

study the magnitude of error introduced by the assumption of finite elements.

To make such estimates, some comparisons are made between well-known estab-

lished solutions and solutions obtained by finite elements. In supersonic
flow, there are exact solutions to the linear theory for conical wings. In

figure 5, the results of the finite element computing program are compared to

exact linear theory (ref. i) for both supersonic and subsonic leading-edged

delta wings. The solid lines are the exact solution and the symbols are the

program output. In figure 6, a comparison is made for a swept, constant-

chord wing with subsonic leading and trailing edges. Here, the exact solu-

tion may be obtained by superposition of several conical fields (ref. 2).

As in the previous case, the finite element procedure provides quite

adequate approximations to the exact solutions.

In subsonic flow, in contrast to supersonic, there are no exact

soltuions to which we may compare program results. For the purposes of

making similar comparisons at subsonic speeds, we use the highly perfected

lifting surface theories based on Multhopp's original idea (refs. 3 and 4).

Figure 7 shows the results of one such comparison. The solutions labelled
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"modified Multhopp" are from Lamar (ref. 4), and the finite element solutions

are from our computing program. As can be seen the results are very close.

These and other similar results indicate that the method of finite elements

is very accurate for solving problems in subsonic and supersonic wing

theory.

For wing-body combinations, there are yet fewer benchmark results with

which to make studies of the accuracy of approximate methods. Some of these

results and comparisons to finite element solutions may be found in refer-

ence 5. It is concluded in reference 5 that the finite element (or panel)

method does not introduce significant errors into the calculation of wing-

body interference at supersonic speeds.

Application to Complex Configuration

The method of finite elements is, therefore, as accurate as any

existing linear theory procedure for calculating the aerodynamic character-

istics of these simple shapes. It has the added virtue of being programmed

for rapid solution on a digital computer. The great value of the method lies

in its ability to generate solutions for complex configurations which can be

solved in no other way, for example, the lifting body under the lifting wing,

biplanes, ring-wings, and wing-body-tail configurations (fig. 8). Studies are

now in progress to explore the application of linear theory to such configura-

tions that rely on interference for the generation of desirable aerodynamic

characteristics. The predicted results for the supersonic biplane are shown

in figure 9. The infinite aspect ratio case was treated by Licher (ref. 6),

and the results are duplicated by finite element theory. The finite aspect

ratio solutions are not obtainable by other theories. Figure i0 illustrates

the use of the program in predicting the characteristics of a configuration

with multiple lifting surfaces. The experimental data are from the supersonic

transport concept known as SCAT-17. In figure ii, the predicted and measured

results for a ring-wing are compared (ref. 7). The small struts used to

attach the ring-wing to the body must be considered to obtain proper
correlation.

Computer Programs

The Ames Research Center of the NASA has undertaken the development
and distribution of computer programs for predicting pressure distributions

on wing-body combinations at subsonic and supersonic speeds. Some early
versions of these programs are described in references 8 and 9. The latest

version of these programs, commonly known at the "Ames Wing-Body Program"
is now available for distribution. This version contains significant

improvements over the program of reference 9. The execution time has been

reduced by a factor of 10 to 2% and the input requirements have been greatly
streamlined. Also, many of the restrictions on geometry have been elimina-

ted and the subsonic surface elements derived by Woodward (ref. 10) have been

incorporated, so that the complete wing-body interference problem can now be

solved at subsonic as well as supersonic speeds. The development of these
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programs is continuing at Ames, and the ultimate goal is a program that will

handle the actual geometry of flight vehicles, including propulsion units,

internal flow, exhaust plumes, separated flows, shock waves, and so forth.

CONCLUDING REMARKS

The method of finite elements has been shown to be an accurate and

straightforward approach to the approximate solution of linear partial

differential equations with complicated boundary conditions. Computer

programs based on this method are now able to handle wing-body combinations

with very few restrictions of geometry. With a reasonable amount of progress

in both aerodynamic theory and computer technology, it will be possible to

create computer programs that will predict the aerodynamic characteristics of

complete flight vehicles. The development of these programs is a major

element in the goal of aeronautical research and development, namely "pro-

viding all information required for a designer to go from paper designs to

production with complete confidence of success" (ref. ii).
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Figure 1

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.

SIMULATION OF AIRSHIP FLOW FIELD BY AXIAL SOURCE

DISTRIBUTIONS

EXACT

AXIAL SOURCE DISTRIBUTION

FINITE ELEMENT

I APPROXIMATION

Figure 2
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FINITE ELEMENT COMPONENTS FOR CONFIGURATION

SYNTHESIS

• POINT ELEMENTS

• SOURCE (SINK)

• DOUBLET

• LINE ELEMENTS

• SOURCE
• DOUBLET

• VORTEX

• SURFACE ELEMENTS

• THICKNESS

• LIFTING

Figure3

COMBINATION OF FINITE ELEMENTS TO REPRESENT

WING-BODY COMBINATION

• BODY THICKNESS BY LINE SOURCES

• BODY LIFT BY LINE DOUBLETS

• WING THICKNESS BY CONSTANT SOURCE PANELS

• WING LIFT BY CONSTANT PRESSURE PANELS

• WING-BODY INTERFERENCE BY CONSTANT PRESSURE
PANELS

Figure4
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COMPARISON BETWEEN EXACT LINEAR THEORY AND
PROGRAM RESULTS FOR DELTA WINGS

14

12

I0

_ACp 8
Q

6

4

2

0

'8cot A --0.8

I I I I I

.2 .4 .6 .8 1.0

J_ CONICAL THEORYOD-_,_7 FINITE ELEMENTS

N

/_cot A : 1.2

y/b=0.45

y/b--o.75

=

I I I I I

0 .2 .4 .6 .8 1.0
FRACTION OF LOCAL CHORD

Figure 5

COMPARISON BETWEEN EXACT LINEAR THEORY AND PROGRAM
RESULTS FOR A SWEPT WING

,8/R = I. 92 ,scos A= o.6
6

5

4

3

_Cp 2
Q

I

0

-I

-2

/

// //

_2y/b = 0.5 "_

y/b =0.25

I I I I I

--NACA REPORT 1050
ID%70Z_FINITE ELEMENTS

" / b =0.75

2y/b =0.95

__ I I I I I i I I I I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

FRACTION OF LOCAL CHORD

Figure 6

46

11 I1 i J 1t U
\

ti I1 l



FINITE ELEMENT APPROACH TO
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NONPLANAR INTE_ CONFIGURATIONS

Figure 8
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DRAG DUE TO LIFT OF A SUPERSONIC BIPLANE
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DISCUSSION

PETER B. S. LISSAMAN, Northrop Corporate Laboratory: The author kept on

talking about subsonic. Does he mean subsonic or does he mean incompressible?

If he means subsonic, how would he take into account compressibility?

CARMICHAEL: Well, let's say compressible within the limits of the

Prandtl-Meyer transformation. There is no nonlinear treatment of the com-

pressible flow equations, so this would be a small perturbation theory for

compressible speeds.

THEODORE R. GOODMAN, Oceanics, Inc.: I have the distinct impression that

a graduate student at Cornell University in the early 'SOs under Bill Sears

solved the supersonic biplane with a finite aspect ratio rectangular planform,

and if you would contact him I am sure he would tell you exactly how to get

hold of that information.

WILLIAM J. EVANS, Grumman Aircraft: Ralph, is your limitation still one

hundred wing panels?

CARMICHAEL: I haven't modified the program that I am running here, even

though we now do have a larger machine. I see no reason why not, and I under-

stand that some people who have gotten our program and modified it run up to
300 finite elements.

EVANS: Is there any indication of computer running time for those cases?

CARMICHAEL: The time is proportional to n 2, where n is the number of

panels. We did say 150 panels in 4 minutes. If you used 600 panels, that is,

4 times as many, the time required would be 16 times as long. These are all

on a 360, model 67, FORTRAN-H.

EVANS: Have you replaced the matrix inversion procedures?

CARMICHAEL: No, they are still single precision. That would be a limit

if you used a very large number of panels. In fact, I am not aware of how the

people who have run this up to 300 panels do the inversion.

It may still work. You know, these aerodynamic matrices are very well

conditioned in the sense that the big, strong elements are on the diagonal, so

you may be able to do single precision inversion up to 200 or 300.

JOSEPH P. GIESING, Douglas Aircraft: I don't want you to give all your

secrets away at one time, but I would like to know, since you are using a

small-perturbation compressible flow analysis, how do you handle pointed type

bodies with your lifting surface elements?

How do you handle the nonplanar aspects of the elements that you place

on the fuselage?
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CARMICHAEL: Oh, yes, there is a real problem, that's right, if you try

to put up to the nose.

GIESING: Or back by the tail.

CARMICHAEL: We solve this by avoiding that problem.

I know that is a real problem. We ran into that in the early days,

trying to put the panels as you saw in that picture (fig. 4), right up to the

nose, making a cone solution with panels. It violates the assumption that the

panels are nominally parallel to the free stream.

GIESING: I just have one other comment. Using the recommended 0.95 does

not give you the right answer in subsonic flow for this method.

We came up with another magic number, 0.85. We found that this worked
exactly right in two dimensions for wings without camber.

CARMICHAEL: Okay. I hate to get into the nitty gritty of this thing,

but the question of where you put that control point in the individual panel

has been the subject of great grief and hand-wringing and all that stuff.

Seventy-five percent was supposedly a magic number at one time, too.

SIEGFRIED WAGNER: I just wanted to say maybe the Multhopp-Truckenbrodt
methods aren't bad.

CARMICHAEL: When we agree with it, we say well, that must be the right
answer.
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CALCULATIVE TECHNIQUES FOR TRANSONIC FLOWS

By John R. Spreiter

Stanford University

and

Stephen S. Stahara and William H. Frey

Nielsen Engineering and Research, Inc.

N70"21354
SUMMARY A - _ --

A summary of old and new ideas and results is presented to show that a

theory already exists that is capable of accounting for many of the properties

of transonic flows, that the fundamental equations, although nonlinear, are

amenable to solution by a number of methods, and that the full potential for

developing calculative techniques for three-dimensional flows has not been

explored. Further progress is definitely possible and some examples of new

developments are provided.

INTRODUCTION

The desire to design aircraft capable of cruising efficiently at speeds

as close to Mach 1 as possible without incurring excessive drag penalties

and the development of military aircraft able to maneuver at transonic speeds

are leading to a renewal of interest in transonic aerodynamics. Although

nearly half a century has elapsed since NACA, predecessor to NASA, initiated

its long line of studies of transonic flow by sponsoring a series of experi-

mental investigations by Briggs, Hull, and Dryden (ref. i), the development

of techniques for transonic analysis has continued to be "a real challenge to

technology," as noted in a recent survey of emerging technologies by Lamar

(ref. 2). He went on to say: 'The dominant nonlinear characteristics of

mixed transonic flows have been far too complex for analysis, especially in
the three dimensions of real vehicles."

In spite of, or perhaps because of, this state of affairs, it is the

purpose of this paper to report on an effort to develop calculative techniques

for predicting transonic aerodynamic characteristics of wing-body combina-

tions. This investigation is currently in progress at Nielsen Engineering

and Research, Inc., under the sponsorship of Ames Research Center. While

this goal may seem unduly optimistic in view of Lamar's assessment of the

field and although the contract has been under way for only six months so

that our specific advances to date are modest, we are confident that much

progress can be made and will present a summary of existing knowledge and

some new results to support this view.

Precedingpageblank
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DISCUSSION

First of all, it should be recognized that considerable progress was

achieved in the analysis of transonic flow in the decade and a half following

World War II (see Spreiter, refs. 3 and 4; Guderley, ref. 5; and Ferrari and

Tricomi, ref. 6, for significant summaries). Most important was the estab-

lishment of the basic concept that there is a major body of transonic flow

problems that can be analyzed adequately within the framework of steady

inviscid flow theory rather than the more general, and far more difficult,

framework of unsteady viscous compressible flow theory. For these problems

the basic equations are therefore those associated with Euler's equation of

motion rather than with the Navier-Stokes' equations. Furthermore, the

general concern with efficient flight of streamlined objects permits the

assumptions of small disturbances and irrotational flow for transonic speeds,

just as in most aerodynamic analyses of subsonic and supersonic flows.

Although the familiar Prandtl-Glauert equation of linearized compressible flow

theory shown on the bottom left of figure 1 is also based on similar assump-

tions, its well-known degeneracy at free-stream Mach number M equal to 1

led Oswatitsch and Wieghardt (ref. 7), Busemann and Guderley (ref. 8), Guderley

(refs. 9 and i0), and von K_rm_n (refs. II and 12) to develop a new nonlinear

theory of small disturbance flow with M near or equal to unity. Although

the basic differential equation for the perturbation velocity potential

has been written in several slightly different forms, the form presented on

the bottom right of figure 1 was shown (Spreiter, ref. 13) to be generally

advantageous because it (a) provides greater accuracy, (b) is no more diffi-

cult to solve, and (c) is applicable not only to transonic flows, but also to

subsonic and supersonic flows as well. This equation thus provides a basis

for a unified flow theory for all Mach numbers from 0 to that supersonic Mach

number (at least 2 or 3) at which linearized supersonic flow theory must be

supplanted by the nonlinear theory of hypersonic flow.

In spite of the seemingly simple form of the differential equation for

transonic flow, the presence of the term involving _x_xx introduces great

complications. These difficulties arise not primarily from the nonlinearity

that this term introduces, but rather from the change of the basic character

of the differential equation from elliptic to hyperbolic type as the sign of

1 - M 2 _ M 2(y + l)(_x/U ) changes from positive to negative. Since no

gener_l mathematical theory exists for such equations, aerodynamicists and

applied mathematicians working in transonic flow theory have had to develop

their own methods. Several of the more successful and generally applicable

of these are listed on figure 2 together with pertinent comments.

Listed first is the hodograph method, since it is the most firmly founded

mathematically and has provided most of the exact solutions with which the

results of approximate theories can be compared. The key step in this method,

summaries of which are given by Guderley (ref. 5) and Ferrari and Tricomi

(ref. 6), is the linearization without approximation of the transonic flow

equation by interchange of the dependent and independent variables through use

of either of two classical transformations of compressible flow theory, the

Molenbroek transformation or the Legendre transformation. The differential
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equation that results in either case can then be transformed simply, by

introducing new normalizing variables, to a linear equation of mixed

e11iptic-hyperbolic type named after Tricomi for his pioneering mathematical

studies of its properties begun approximately 50 years ago. Solutions for a

number of problems of aerodynamic interest have been determined in this way

by superposition of more elementary solutions found by application of either

analytical or numerical techniques. In all except certain special applica-

tions, however, the analysis must proceed in an indirect manner because the

shape of the body cannot be prescribed in advance but must be found as part

of the solution. Although many valuable results have been obtained in this

way, the fundamental restriction of the hodograph method to two-dimensional

planar flows precludes its further consideration in the present study

directed toward wing-body combinations.

The integral equation method is an approximate method based on considera-

tion of a nonlinear integral equation derived from the differential equation

for transonic flow through application of Green's theorem. It originates

from a series of papers of Oswatitsch (refs. 14 and 15), Gullstrand

(refs. 16-19), Spreiter and Alksne (ref. 20), and Spreiter, Alksne, and Hyett

(ref. 21). More recently, reviews of this method have been given by Zierep

(ref. 22) and by Ferrari and Tricomi (ref. 6). Although the initial steps of

the integral equation method are analytic, the calculations proceed directly

toward the solution for a body of specified shape through a combination of

numerical and iterative procedures. At present, the method has been developed

for planar flow past nonlifting airfoils for M < I, and the results for such

cases appear to be the most satisfactory of those provided by any of the

methods listed on figure 2. The method is potentially more versatile than

these results indicate, and discussions of preliminary aspects of extensions

to other cases may be found in the references cited above. Precise details

for such cases remain to be developed, however.

The parabolic method stems from the daring proposal by 0swatitsch and

Keune (ref. 23) that the nonlinear term in the transonic flow equation could

be approximated satisfactorily for flows with M = 1 past slender bodies of

revolution by replacing _x_xx by K_x, where _ is a constant. The method

derives its name from the parabolic type of the resulting approximate differ-

ential equation for _ which has the form of the equation of heat conduction.
This procedure was subsequently applied to planar flows past thin airfoils,

and extended to other Mach numbers by the simple expedient of retaining the

term {1 - M_2)_xx • Reviews of these developments have been given by Maeder
(ref. 24) and Hosokawa (ref. 25), the two leading contributors. Although the

procedures are direct and simple, the results lack accuracy generally and

must be judged to be the least satisfactory of those provided by any of the
methods listed on figure 2.

The local linearization method which grew out of the parabolic method of

Oswatitsch and Keune is yet another approximate method for solving the tran-

sonic flow equation. This method has been applied to planar flow past thin

airfoils and to axisymmetric flow past slender bodies (Spreiter and Alksne,

refs. 26 and 27) for the Mach number ranges M = 1, M _ Mcr, Z and

M ! Mcr,u , where Mcr,Z and Mcr,u refer to the lower and upper critical

55



Mach numbers that bound the transonic range. It has also been applied by

Alksne and Spreiter (ref. 28) to flows with M = 1 past nonlifting wings of

finite span having simple planform and airfoil_shapes. In addition to being

the most versatile of all the methods presently available for predicting

aerodynamic properties of thin wings and slender bodies at transonic speeds,

the local linearization method has consistently displaced accuracy comparable

with the best theoretical and experimental results. For these reasons, this

method has been selected for further study as holding the greatest promise

for successful extension to wing-body combinations. Briefly, the basic idea

underlying the method is that of linearizing the transonic flow equation by

replacing either _x or _xx in the nonlinear term by a constant _, solving

the simplified equation, and then introducing different values for _ for

different points in the flow. This procedure might be considered equivalent,

in some sense, to replacing the original nonlinear partial differential equa-

tion by a different linear partial differential equation at each point.

Results obtained by such a procedure depend, of course, on the choice of

and must be assembled to determine the final results. This step is accom-

plished by putting the results into such a form that a first-order nonlinear

ordinary differential equation is obtained for the streamwise perturbation

velocity component u = _x after _ is replaced by the quantity it origin-

ally represented. In many cases, this equation is of sufficiently simple

form that it can be integrated analytically and the solution expressed in

closed form. In other cases, the integration must be performed numerically,

but the equation is of such a form that standard methods can be applied.

The parametric differentiation method of Rubbert and Landahl (ref. 29)

is a recent addition to the list of procedures for obtaining satisfactory

approximate solutions of the transonic flow equation. The difficulties

associated with the nonlinearity of the basic equation are avoided by con-

sidering the linear problem governing the rate of change of the flow velocity

with respect to the airfoil thickness ratio parameter and integrating solu-

tions of this problem over the thickness ratio. This procedure is equiva-

lent to summing a series of perturbations in airfoil thickness and has the

advantage, shared with the local linearization method, of moving all the non-

linearity to a first-order ordinary differential equation where it causes

little difficulty. The method has been applied to planar flow past nonlift-

ing airfoils, and the results are either identical to or very nearly the same

as those of the local linearization method. There is obviously considerable

merit to this method, and further study to extend the range of cases for

which it is explicitly applicable is clearly warranted. The close relation-

ship between the results of the parametric differentiation and local lineariza-

tion methods, in spite of the seemingly different nature of the approximations

involved, is also provocative; further investigation of the reasons for this

may be anticipated to lead to a better understanding of the mathematical

foundations of both methods. For the present, however, we will continue to

apply the method of local linearization, knowing that it is likely that many

of the results so obtained might also be effectively reproduced by suitable

extensions of the parametric differentiation method.

Solution of the transonic flow equation by completely numerical

procedures is included in the list of methods not so much because of the
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demonstrated ability of such procedures to yield useful results, but because
of the promise that this approach holds with the continued improvement of

electronic computing capability. Although a number of groups are developing

these methods, progress has been slow, and very few details or results for

transonic flows have been published to date. It is clear, however, that the

completely numerical solution of transonic flow problems is not only expen-

sive but probably limited to two-dimensional flows with the present genera-

tion of computers. For these reasons, we have not considered it profitable

at this time to seek solutions for transonic flow about wing-body

combinations by application of completely numerical techniques.

The first and simplest transonic flow problem to which the local

linearization method was applied was flow with M = 1 past thin nonlifting

airfoils having a finite angle at the leading edge. The variation of the

pressure coefficient CD = (p - p_)/(p U2/2), or its transonic similarity

counterpart Cp, along _he surface of such an airfoil is found to be given by
the expression at the top of figure 3, in which Z represents the ordinates

of the airfoil surface and x* represents the x-coordinate of the point on

the airfoil surface at which the flow accelerates through the speed of sound.

Although x* is known a priori to be at the shoulder of a single_ or double-

wedge airfoil (see, e.g., ref. 5), the location of the sonic point on a con-

tinuously curved profile must be found as part of the solution. It is,

according to the method of local linearization, at the point x at which the

second equation shown on figure 3 is satisfied. In the original presentation

of these results, Spreiter and Alksne (ref. 26) applied the theory to a

family of airfoils tested by Michel, Marchaud, and Le Gallo (refs, 30 and 31)

having thickness ratios T from 6 to 12 percent and positions of maximum

thickness from 30 to 70 percent of the chord. The ordinates of the airfoils

with maximum thickness at 30-, 40-, and 50-percent chord are proportional to

1 (x/c) - [1- (xlc)] n

where n _ 6.05, 3.38, and 2, respectively. In the original comparisons, the

integrations were performed analytically, but it was necessary to approximate

the exponent 6.05 by 6, and 3.38 by either 3 or 3.5, in order to carry out

the indicated integrations. Even with this simplification, the final expres-

sions are so lengthy that even substituting numbers into them to obtain spe-

cific results is a laborious task. Nevertheless, the comparisons, such as

that shown on figure 3 for airfoils with n = 3.38, served to demonstrate

that the theoretical results are indeed both versatile and in good accord

with experiment.

As the first step in the application of electronic computers to the

method of local linearization, we have programmed the general equations shown

on figure 3, and applied them to calculate the pressure distribution on the

airfoil defined by the above expression with n = 3.38. The new results have

been added to the plot in figure 3, and we note that they fall between the

previous analytic results for n = 3 and 3.5 as they should. All three sets

of theoretical results are also in satisfactory agreement with the experi-

mental pressure distributions for all four airfoils tested except near the
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trailing edge, where interactions between the boundary layer and the trailing
shock waves disregarded in the theory are undoubtedly responsible for the
discrepancies.

The pressure distributions shownon figure 3 are dis_played in transonic
similarity form so that the results appear in terms of Cp instead of Cp.
This is done to facilitate comparison of a single theoretical curve with data
for four affinely related airfoils having different thickness ratios. The
corresponding results for Cp are presented in the left-hand part of figure 4
for a specific airfoil of the same family having a thickness ratio of 1/12.
In addition to the results for M_ = I, the theoretical pressure distributions
indicated by the local linearization method for the lower and upper critical
Machnumbers are also displayed. In the right-hand part of figure 4 are
shownthe variation with M of the minimumvalue of Cp for subsonic flow
and the maximumvalue of Cp for supersonic flow. The zntersections of these
curves with the curve representing the variation of the critical pressure
coefficient Cpcr with M defines the boundaries of the transonic range.
Of particular interest is the remarkable width of the transonic range, which
for this particular airfoil extends from M_= 0.75 to 1.66. Moreover, this
range would be even greater were the airfoil lifting.

Results for axisymmetric flow past a body of revolution having the same
ordinates as the airfoil considered in figure 4 are presented in figure 5.

In the left-hand part are shown the theoretical pressure distributions on the

body surface for M = 1 and for the lower and upper critical Mach numbers.

Also included for co_mparison are the experimental results for M_ = 1 for

this body, as measured in the Ames 14-Foot Transonic Wind Tunnel by McDevitt

and Taylor {ref. 32) and abridged for clarity of representation. As with

previous comparisons with other bodies of revolution having simpler expres-

sions for the ordinates (Spreiter and Alksne, ref. 27; and Spreiter_ Smith,

and Hyett, ref. 33), the results calculated using the local linearization

method agree well with the experimental results over most of the body but

disagree noticeably over the rear of the body. Comparison with the results

presented in figure 4 shows that the magnitudes of the peak pressure coeffi-

cients are much smaller for axisymmetric flow past a body of revolution than

for planar flow past an airfoil having the same profile. As a result, the

transonic range is also much smaller and, as can be seen from the right-hand

part of figure S, extends from M = 0.94 to 1.29 for the present example.

With respect to the discrepancies between the theoretical and

experimental results near the rear of the body, many would be inclined to

dismiss further discussion by attributing the differences to shock-wavem

boundary-layer interaction effects not included in the theory. While there

is little doubt that such effects are important, we believe that the experi-

mental results for the rear of this body are subject, in addition, to signi-

ficant interference effects of the wind-tunnel walls. Althou_h there is no

explicit experimental evidence to support or refute this statement for the

specific body considered in figure 5, the data on figure 6 for a closely

related pair of bodies are definitely relevant. The plots on the left show

pressure distributions measured at M = 1 on two bodies of revolution

having ordinates proportional to 1 -_(x/_) - [I - (x/_)] n and

58



diameter-length ratio D/1 of 1/12. The results shown in the upper plot are

for a parabolic-arc body, for which n = 2, and those in the lower plot are

for a body with maximum thickness at 30 percent of its length, for which

n = 6. Both wind-tunnel models were 6 inches in diameter, the same as that

for which data are shown in figure 5. The data for these bodies obtained by

Taylor and McDevitt (ref. 34) and McDevitt and Taylor (ref. 32) in the Ames

14-Foot Transonic Wind Tunnel with square test section are indicated by the

open circles. The closed circles indicate the data obtained when the same

actual models were subsequently tested under choking conditions in the Ames
12-Foot Pressure Wind Tunnel which has solid walls and a circular test section

(Spreiter, ref. 4; and Spreiter, Smith, and Hyett, ref. 33). The principal

points to observe are that both sets of experimental data are in essential

agreement with each other and with theory over most of the body but that all

three sets of results are widely divergent over the rear of the body.

The source of these differences has been discussed previously (Spreiter,

ref. 4; Spreiter, Smith, and Hyett, ref. 33; and Berndt, ref. 35), but it is

worth reviewing here because similar considerations are likely to be of impor-

tance in most comparisons of theoretical and experimental results for tran-

sonic flow past slender bodies or wing-body combinations. This can best be

done by considering the diagram of figure 6 which shows the characteristic

lines for an unbounded flow with M = 1 past a parabolic-arc body of revolu-

tion having a diameter-length ratio_of 1/12. These results have been calcu-

lated by application of the transonic similarity rule for axisymmetric flow

(0swatitsch and Berndt, ref. 36) to a related diagram given by 0swatitsch

(ref. 37) for a parabolic-arc body of revolution with a diameter-length ratio

of 1/6. The position of the wall with respect to the model in the tests in

the 12-foot pressure wind tunnel is as indicated, and the nearest part of the

wall in the tests in the 14-foot transonic wind tunnel is 7/6 as far away.

Although it was thought at the time of the tests in the 14-foot transonic

wind tunnel that the 6-inch diameter of the models was sufficiently small to

avoid significant effects of wind-tunnel-wall interference, figure 6 shows

that this may not be the case because characteristics, or Mach waves, origi-

nating from the forepart of the body are indicated to be reflected from the

walls onto the aft part of the body. It can be seen, moreover, that the most

upstream reflected characteristic strikes the body at about x/1 = 0.6 in

the 12-foot wind tunnel test, and only slightly aft of that location in the

14-foot wind tunnel. The effect of the reflected waves striking the body is

to make the pressure coefficients more negative in the 12-foot wind tunnel,

because the outgoing characteristics represent expansion waves that reflect

from the solid wall of the tunnel as rarefaction waves. The effects are

amplified, moreover, because of the focusing characteristics of the reflected

axisymmetric waves as they collapse down onto a part of the body that has a

smaller circumference than that from which they originated. The sign of the

corresponding effects in the 14-foot transonic wind tunnel is not so simple to

ascertain, since the reflections from the partly open wall of that wind tunnel

are very nearly equal in magnitude, but opposite in sign, to that of the
reflectlons from the solid wall of the 12-foot wind tunnel. In addition to

the direct effects of the reflected waves impinging on the rear of the body,

there exists the distinct possibility of significant augmentation arising from

the interaction of the boundary layer with a shock wave that may form adjacent

to the body. The latter may form either because of coalescence of compression
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waves reflecting from the body or because of boundary-layer separation

resulting from the wall-induced steepening of the adverse pressure gradients.
In either case, it is clear that considerable additional study will have to be

made before it is possible to properly evaluate the significance of discrep-
ancies between theoretical and experimental pressure distributions on the aft

parts of bodies of revolution such as those illustrated in figures 5 and 6.

Perhaps one of the best-known properties of transonic flows is the
transonic area rule of Whitcomb (ref. 38). It states that, near the speed of

sound, the zero-lift drag rise of a slender wing-body combination (thin low-

aspect-ratio wing, slender body) is primarily dependent on the axial distribu-
tion of cross-sectional area normal to the air stream. This rule, which was

proposed on the basis of certain fundamental, yet elementary, statements
regarding the nature of transonic flow fields and demonstrated experimentally,

is closely related to the transonic equivalence rule which relates the flow
around a slender body of arbitrary cross section to the flow around an "equiv-

alent" nonlifting body of revolution having the same longitudinal distribution

of cross-section area S(x). The latter rule was first proposed for transonic

flow past thin nonlifting wings by Oswatitsch (ref. 39) and later extended

initially to lifting wings by Spreiter (ref. 3) and subsequently to slender
bodies of arbitrary cross section, including wing-body combinations, by

Heaslet and Spreiter (ref. 40). Figure 7, which is an extension to wing-body
combinations of a rather similar figure presented by Spreiter (ref. 3) for

thin wings, summarizes the theoretical essentials of both the equivalence and

area rules. Most important is that the expression for the perturbation veloc-

ity potential ¢ in the vicinity of a slender body of arbitrary cross section

is approximately of the form ¢ = ¢2 + g(x) where ¢2 is the solution of

Laplace's equation Cyy + Czz = 0 for the given boundary conditions in the
yz plane at each x station, and g(x) is an additional contribution depen-

dent upon M and S(x) but not on the shape of the cross section. It is thus

possible to _etermine g(x) from the solution of the simpler problem of

axisymmetric flow past the equivalent body. The equivalence rule, which is
described in mathematical terms by

¢ = ¢2,_ + ¢2,t - ¢2,B + ¢B

in which each component of ¢ has the meaning indicated in figure 7, follows
immediately by writing ¢ = ¢2 + g(x) for the body of arbitrary cross section

and subtracting the corresponding expression for the equivalent body.

The order of error in the transonic equivalence rule has been

established by Heaslet and Spreiter (ref. 40) for thin wings of aspect ratio

A, chord c, and thickness ratio T. It was shown that the magnitude of the

quantity ¢/U c retained in the equivalence rule is O(AT In A), whereas that
of the quantities discarded in the derivation for M = 1 is O(A4T 2 Zn A).

Since the magnitude of the quantities discarded in t_e derivation of the

corresponding result in linearized subsonic and supersonic flow past slender

bodies is O(A3T Zn A), it follows that the equivalence rule ought to be

applicable to wings of greater aspect ratio at M = 1 than at any other
Mach number.
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Once the appropriate expression has been constructed for _, the pressure
distribution on or near the surface of slender bodies may be determined by

use of the expression for Cp shown on figure 7. The results may, in turn,
be integrated to obtain expressions or values for the total forces, including

lift and drag, and moments on slender bodies or wing-body combinations of

arbitrary cross section. Since the aerodynamic loading, lift, and all lateral

forces and moments depend on differences in pressure between pairs of points

at the same longitudinal station, these quantities depend solely on 02 and

are therefore independent of M . In particular we may note, as discussed by
Spreiter (ref. 41) and Heaslet, Lomax, and Spreiter (ref. 42) even before the

discovery of the transonic equivalence rule, that these quantities may be

calculated quite adequately by linearized slender-body theory even though

M may be unity.

It is evident that the transonic area rule of Whitcomb is closely related

to the transonic equivalence rule. In a detailed examination of the relation

between these two rules, Heaslet and Spreiter (ref. 40) derived the expression

shown on the bottom of figure 7 between the drag D of a slender body of

arbitrary cross section and the drag DB of the equivalent body of revolu-
tion. Each of the integrals is a line integral along a curve that is situated

in a plane perpendicular to the x-axis and that traverses the base of the

body and any vortex wake which may be present. The difference D - DB is

thus independent of M and is the same as given by linearized slender-body
theory. If the arbitrary body is inclined at angle of attack _, the first

integral provides a contrlbution to the drag that is proportional to _2.

This quantity is exactly the vortex drag associated with the production of

lift. If attention is confined to nonlifting cases, several classes of shapes

exist for which the contribution of the two remaining integrals cancel, and

D = DB as proposed by Whitcomb. One important class includes shapes that
taper to a point at the rear, since then both integrals vanish as the contour

shrinks to a point. Another includes shapes that are cylindrical at the base)

since then _2 t/_n = DO2 B/_n = O. Still another includes bodies for which
the equivalent _ody and th_ original body have the same shape and surface

slopes at the base, since then both integrals are carried out over the same

contour, along which _2,t = O2B and _2,t/Dn = _2B/Dn, and the integrals

again cancel. These and many other cases for which the integrals cancel

constitute the class of shapes for which the transonic area rule applies.

We now turn to two new applications of the transonic equivalence rule

that are significant to the further development of calculative techniques for
three-dimensional transonic flows. The first of these, summarized on fig-

ure 8, exploits the result that _ = 02 + g(x) = (U /2_)(dS/dx)Zn r + g(x) in
order to calculate the properties of the flow field at points removed from

the body surface. The plot in the lower left shows the theoretical pressure
distribution for M = 1 on the surface of a parabolic-arc body of revolution

with a diameter-length ratio of 1/12, as indicated by the local linearization

method and data from the experiments of Taylor and McDevitt (ref. 34) in the

Ames 14-Foot Transonic Wind Tunnel. The two plots in the upper left show the

corresponding comparisons of calculated and measured pressure distributions

along lines parallel to the body axis but removed from it by distances of 4

and 8 times the maximum diameter D of the body. The plot on the right
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shows the variation of Cp with distance measured laterally from the mid-

point of the body axis. Except for the discrepancies near the rear of the

body that have already been discussed in connection with the presentation of

the same results for the surface pressure distribution in figure 5, the

agreement between theory and experiment is generally satisfactory. This is

particularly so when considered with respect to possible applications of the

transonic equivalence rule to configurations having wings or related extrem-

ities of such size that they, rather than the body, provide the major contribu-

tion to Cp at lateral distances of the order of those for which results are

shown in figure 8.

The second application, summarized in figure 9, is to flows with M = 1

past two different slender bodies with elliptical cross section having ratios

a/b of major to minor axes of 1.5 and 3. The experimental data are those of

McDevitt and Taylor (ref. 43) for the longitudinal variation of Cp at the

extremities of the major and minor axes. The theoretical results have been

determined by using the transonic equivalence rule to account for the differ-

ences between the elliptic bodies and the equivalent body of revolution and

the local linearization method to provide the results for the equivalent body.

The expression for _2,t required to describe the two-dimensional flow asso-

ciated with the growing and shrinking of the elliptic cross sections is known

(see for instance Nielsen, ref. 44) to be given by the relation shown on fig-

ure 9, where R.P. stands for the real part of the complex function that

follows. As in the previous comparisons, the theoretical and experimental

results are in good agreement except near the rear of the bodies, where at

least part of the discrepancies must be attributed to the extraneous effects
of the wind-tunnel walls.

CONCLUDING REMARKS

It is hoped that this summary of old and new ideas and results has

served to show that a theory already exists that is capable of accounting for

many of the properties of transonic flows, that the fundamental equations,

although nonlinear, are amenable to solution by a number of methods, and that

the possibilities for the development of calculative techniques for three-

dimensional transonic flows are not nearly so bleak as indicated by the quota-

tion in the opening paragraph. Further progress is definitely possible but

will come only with determination and the expenditure of effort, and these

have largely been lacking in this field during the past decade.
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BASIC CONCEPTS

GOAL: TO CALCULATE PRESSURE DISTRIBUTION, AERODYNAMIC

CHARACTERISTICS, AND FLOW FIELD OF WING-BODY
COMBINATIONS AT TRANSONIC SPEEDS

EQUATIONS, EXACT AND APPROXIMATE

I NAVIER-STOKES EO. FOR UNSTEADY COMPRESSIBLE VISCOUS FLOW ]
I

ASSUME STEADY INVISCID FLOW
,)

]EULEREQ.OF STEADY COMPRESSIBLE FLOW]

¢
ASSUME SMALL DISTURBANCES AND IRROTATIONAL FLOW, O _< MOO-< ~ 3

LINEARIZED THEORY

(I-IV_)Cxx+@yy+@zz = O

TRANSONIC RANGE

EXCLUDED

TRANSONIC THEORY

M_(_'+ I)@x @xx
(I'M2)<ibxx+ <_/Y+_ZZ =" U_o •

UNIFIED THEORY FOR SUBSONIC,

TRANSONIC, AND SUPERSONIC FLOW

Figure 1

PRINCIPAL METHODS OF SOLUTION

HODOGRAPH

EXACT, LIMITED TO PLANAR FLOW, INDIRECT, ANALYTIC OR NUMERICAL

INTEGRAL EQUATION

APPROXIMATE, DEVELOPED ONLY FOR M m <1 PLANAR FLOW BUT
POTENTIALLY VERSATILE, DIRECT, NUMERICAL INTEGRATION

PARABOLIC METHOD FOR MOO= I, AND EXTENSION FOR ALL Mo_

APPROXIMATE, PLANAR OR AXISYMMETRIC FLOW, DIRECT, SIMPLE, BUT
NOT ACCURATE GENERALLY

LOCAL LINEARIZATION

APPROXIMATE, DEVELOPED FOR PLANAR, AXISYMMETRIC, OR NONI,JFTING

FINITE SPAN WING FLOWS WITH Moo == I, M m < Mcr, l , OR Moo _>

Mcr, u AND POTENTIALLY MORE VERSATILE, DIRECT, RELATIVELY
SIMPLE, ACCURATE

PARAMETRIC DIFFERENTIATION

NEW, PLANAR RESULTS SIMILAR TO THOSE OF LOCAL LINEARIZATION,

DIRECT, PROMISING

COMPLETELY NUMERICAL

DEPENDS ON INCREASING CAPABILITIES OF ELECTRONIC COMPUTERS_

EXPENSIVE, UNDER DEVELOPMENT FOR TWO DIMENSIONS AT PRESENT

Figure 2
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APPLICATION TO PLANAR FLOW, Mm=l

LOCAL LINEARIZATION PROVIDES

.12 1113
[M_('y +I)]I,' 3/'x [d f:idtZ/'r)/d_,._].. [_,,: _ co---_"',,,L( ,,-v_c--_"'j °"]

d4

ANALYTICAL c_ t_._'__o
!

n.3.5\ R_-f,_MER,C_Lv D
-2 o--3.o\_ _n;_._.

o_- .z[(,.__(,__)n]

o
8/ o .os

WHERE x* IS VALUE
OF X WHERE

d.___f_d x d(Z/r)/d_ d_ = 0

EXPERIMENT

n: 3.38, (X)zmox:.40

[MICHEL et OI. 1954]

4
0 .2

Me:)= I r-I .08
z_ .lO
v .12

I I I

.4 .6 .8
X/C

I.O

Figure3

APPLICATION TO PLANAR FLOW

-I.2

-.8 _=.75_.?min ,M_)=,

Cp 0 _"_

.4 _'_'_"
_Cpmox 1
-Z x x 3.38

.e _~[(,__)_(,__1 ]
T=/21.2 t

0 .5 1.0
x/c

_c,

CPmin ./_l\

I

Mcr, t.'.75

',
i

0

I 2(I- M2_)
cr =

M_(_" + I)

\ Cp_.

_,: I_, 7
tl I

I
_ _:_lC t I SUPER_IC

I l

I 2

Moo

Figure4
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APPLICATION TO AXlSYMMETRIC FLOW

o EXPERIMENT, 14' TRANSONIC WIND TUNNEL, MGo =I

[MCDEVITT AND TAYLOR, 1958 ]

/ -;-_,-÷H,-÷__'1 _/ T-- ,_.., _-(u _ ,(=)

-.2 /_" Cpmin .2

-,1- ._%..=., I I /to=J°'_>

.2 2. ! , u___ ,
I ........ i tu,-: _.

• _3 ,_411$0111C _ $0111¢ , $1/_11_111C

0 .5 1.0 0 I 2

x]+, %

Figure 5

EFFECT OF WIND TUNNEL WALLS AND BOUNDARY LAYER ON
PRESSURE DISTRIBUTIONON SLENDER BODIES OF REVOLUTION,Moo=I

-.2

-.I

Cp
0

.I

.2

-.2

_oi

Cp
0

.I

.2

.3IT
0

THEORY _

l l l

;-[(,-{_-(,-,_1+]
I

.5 1.0

x/Z

CHARACTERISTIC DIAGRAM OF
BODY IN WIND TUNNEL

r,e'JJJJJJJPlPlJJllJ, aFIp,ar,ffjjlpllplpliPlill(q
/, WALL A_AI_

12'WIND TUNNy__

PARABOLIC-ARC
BODY, D = 6"

EXPERIMENT, D//. = 1/12, D = 6"

o 14' TRANSONIC WIND TUNNEL, MaD = I
[MCDEVITT AND TAYLOR, 1958]

• 12_SOLID WALL, CHOKED

[SPREITER et (:]1.,1960]
THEORY, LOCAL LINEARIZATION

Figure 6
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TRANSONIC EQUIVALENCE AND AREA RULES FOR SLENDER

j iz WING-BODYCOMBINATIONS
Um <_--'_" I _"- Y " 2" M_(y+l)

o\-_ "-M=_*,.+*,,+*z,=--_-_-_*,*,,

A

,'/%- + %,t,
_; +

(_)'.,. EQUIVALENT BODYWITH SAME S(x)
ASWING-BODY

g(x) FOR SMALL r

co=-#,,,(,,x+a,,z)-'_(,,,,,_.,-,,,,,_)
AREA RULE FOR DRAG

VORTEX DRAG

_°(h'_'° " _,,_'*_"s_,__" )D = DB - _- ,a'-_'n _dsc + ,t-'_n -dst - a --_"n-'dsB

Figure 7

PRESSURE DISTRIBUTION IN FLOW FIELD OF A SLENDER

BODY OF REVOLUTION, M m = I

-.I r r = 80 I

Cp O_
,1 z- i

%1

o

Cp

.I

.2

.3

B

r = .505

, ? I

-.15O -.05 "-.10
Cp

EXPERIMENT,14' TRANSONIC
WIND TUNNEL

D=6" BODY

[TAYLOR AND McOEVITT, 1958]

THEORY
SURFACE:LOCALLINEARIZATION

_LOW_.E'D:*._C_,)',.,*g,X,
I 2

,,ESSuRE:c,. -_ ,, --_ ,;

Figure 8
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PRESSURE DISTRIBUTION ON PARABOLIC-ARC BODY

WITH ELLIPTIC CROSS SECTION, M=o -- I

THEORY: --e=O °, ---e=90"
LOCAL LINEARIZATION AND EQUIVALENCE RULE

_2,,=R.P.L-=_-F
S =w" ab, o- =y + iZ

oe EXPERIMENT
14' WIND TUNNEL

-.15

-.10

-.05

Cp
0

.o5

.10

.15
0

I °
a/b =1.5

I

.5
X//.

McDEVITT AND TAYLOR, 1958]

1.0

90 o

a/D ="31 I

0 .5 ID
x/?.

Figure 9
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DISCUSSION

NORMAN MALMUTH, North American Rockwell Science Center: I was wondering,

Dr. Spreiter, whether you cared to comment on the relative advantages of

unsteady and steady difference methods compared to the integral equation

method, which you briefly mentioned.

SPREITER: No, I don't think I could make any very good comments on that.

MALMUTH: I have another question about the applicability of your

technique of local linearization to flows with a shock. Have you given any

attention to this recently?

SPREITER: Not yet. So far our concern has been to develop programs

which will let us do quickly what we already know; and we are using them to

explore more configurations to get a firmer feeling of where we can go and

where we cannot.

MALMUTH: My last question is on the equivalence rule. Can you extend

it to larger incidence angles beyond its original limitation of small angle

of attack compared to thickness ratio?

SPREITER: I don't know that the restriction you quote applies all of

the time, since you can actually apply the equivalence rule to a wing with no

thickness, ideally, a lifting flat plate, and it works perfectly well. I

think in some of these instances one lacks a full definition of the boundaries

of applicability. There are various ways in which these theories are appli-

cable; and one must be a little careful when in possession of a demonstration

or proof that it is true under certain circumstances not to regard that as a

necessary condition, but more as a sufficient condition.

JAN RAAT, General Dynamics/Convair: I would like to draw attention to

still another approximate method to attack the transonic potential equation.

One can rewrite the equation in the form (I M2)_xx + _yy = 0 and then
assume M to be a function of x alone. _is simplification has also been

made by Rubbert and Landahl. However, at this stage one does not have to go

into parametric differentiation. The simplified equation can be handled by

operational techniques so that the problem reduces to a nonlinear ordinary

differential equation, which can then be treated by the WKBJ method for slowly

varying functions. We have done some work along these lines at Convair and

we have obtained encouraging results for symmetric bodies at zero incidence.

SPREITER: Actually I could have extended my list by several more schemes.

What you are describing sounds quite similar to the method that Julian Cole

and Royce developed at one time in which they replaced _x_xx term with

X(_xx). They then applied the method to a body of revolution having, I

believe, a parabolic arc profile.

Mrs. Alksne and I inspected that method at the time; and what we found

was that it would indeed give a good result for a parabolic arc body of
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revolution and also, as I recall, a parabolic arc airfoil. But as we tested

it by going to other bodies, with maximum thickness fore and aft of the

midpoint, its success deteriorated very badly.

I think these are all closely related concepts of approximation, and

don't regard them so much as competing with each other as supplementing.

Ultimately, we may have a better theory than any of them.

RAAT: As far as accuracy is concerned, I think operational methods and

Rubbert and Landahl's technique produce about the same results. In either

case, one starts out with the crucial assumption of the local Mach number M

being a function of x alone. From then on it essentially is a matter of

applying different tools to the same problem.

I agree with you that the various approximation schemes that have been

employed, usually lead to surprisingly similar results.

SPREITER: Yes, and perhaps this would be even more clear if one had a

better insight into similar ideas. Heaslet, for example, in the Japan

National Congress of Applied Mechanics in 1959, which probably is very

unknown since it. was only published in the proceedings volume in Japan, has a

very provocative development which leads to the same results as the local

linearization method. In his development, he starts with a reciprocity

theorem, a nonlinear one, and relates the transonic flow to another flow in

the reverse direction about the same object. He then makes a plausible

approximation, and io and behold, the familiar results emerge. I think it is

a very interesting situation where you have several approaches that seem

rather different in the beginning, but end up with either identically or very
closely the same results.
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PROCEDURES FOR DESIGNING SUPERSONIC BODIES OF REVOLUTION

FROM PRESCRIBED SURFACE PRESSURE DISTRIBUTIONS

By Raymond L. Barger

NASA Langley Research Cente_

SUMMARY
N7o'  355

An iterative procedure for designing a body from a prescribed surface pressure

coefficient distribution is described. The method of successive approximation was pre-

ferred over a possible analytic inversion procedure because any slight deviation from

exactness in computing the body shape, made in order to obtain an analytic solution, would

cause a greatly amplified error in the final pressure distribution. The present method

also facilitates comparing design and off-design performance. Results calculated for a

static pressure probe designed by this method indicated that it could be effectively used

over a range of Mach numbers including the design Mach number.

INTRODUCTION

There are a number of problems involving bodies of revolution at supersonic speeds

for which it would be advantageous to relate the body design directly to a desired surface

pressure distribution. Such problems arise, for example, in the design of fuselages for

experimental wing-body combinations, in pressure-sensor design, and in the design of

certain specialized types of projectiles.

It does not appear to be possible to obtain a direct analytic solution for the body

shape in terms of the pressure distribution, except by using a theory that is so approxi-

mate that the results are essentially useless. However, an iterative method that appears

to work well (provided, of course, that the prescribed pressure distribution is a reasona-

ble one) is described herein.

It is apparent that in prescribing a surface pressure distribution there must be

some limitation on the initial positive portion in order that the condition of shock attach-

ment be satisfied. It is also necessary to place some constraints on both the area and

the slope of the negative portion in order to obtain a body with a reasonable base area

and in order to prevent a sudden necking down or "wasping" of the body shape. Any such

sudden or large reduction in body radius would cause premature flow separation on the

resultant body and might result in the calculation of a negative radius, in which case the

procedure would fail to converge. In other cases the procedure would converge, so these

Precedingpageblank
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constraints are not critical with regard to convergence; however, if one prescribes a

completely absurd pressure distribution, the resulting shape will be unsatisfactory in

some way.

SYMBOLS

body surface pressure coefficient

body length

M Mach number

R body radius

S body cross-sectional area

t,x

U

axial coordinates

tabulated function

u,v dimensionless axial and radial disturbance velocities, respectively

_=_f_- 1

A denotes increment in indicated quantity

Subscripts:

n denotes nth iteration

oo free stream

Superscript:

denotes derivative in axial direction

GENERAL PROCEDURE

The general procedure is summarized first,and some of the steps are described

subsequently in more detail. The general procedure includes the following six steps:
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(1) An initial body shape is assumed. (The convergence of the procedure is not at

all sensitive to this initial guess; the program as written simply uses a parabolic shape.)

(2) Its pressure coefficient distribution is calculated.

subsequently.)

(3) The error is computed - that is, the values of Cp for the body are subtracted

from the desired values of Cp.

(4) The body slope distribution is changed in such a way that the error in step (3) is

reduced. (This step is also discussed subsequently.)

(5) The new slope function is integrated to obtain an improved body shape - that is,

a body that has a pressure distribution nearer to the desired distribution.

(6) The improved shape is introduced into the program as the input for the next

iteration.

This procedure is repeated until the error is reduced to a negligible value.

(This calculation is described

PRESSURE CALCULATION

Step (2) of the general procedure requires some further discussion. The basic

expression used in this pressure calculation is Lighthill's approximate solution of the

linear equation for the nondimensional axial velocity (ref. 1, p. 455)

2_ _0 U_x - t]dS'(t)u(x)_--

in which {_ has the constant free-stream value. This expression is modified in the

analysis of reference 2, which makes use of an approach somewhat similar to local lin-

earization to obtain the following equation (given here in the present notation):

x uFx-t lI! + u(t)]dS'(t)
L (t)R(t)J

This equation contains the local _ instead of the free-stream value, and a factor of

1 + u has been inserted. This new factor is a result of using the exact boundary condi-

tion in Lighthill's original derivation instead of the slender-body approximation.

It is seen that, whereas the basic Lighthill expression is simply a formula for u,

the modified expression is an integral equation for u. Furthermore, it is highly non-

linear because u is involved not only on the left-hand side of the equation and explicitly

under the integral but also in each _. An approximate solution to this equation was
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obtained in reference 2 by the method of parametric differentiation, with the body thick-

ness ratio used as the parameter.

Inasmuch as parametric differentiation is a complicated procedure, both theoreti-

cally a_d computationally, that method was not used in the present analysis. Instead, the

integral equation was solved by successive approximation, as indicated by

x u_x_ t_ (1 + un)dS'(t)
Un+l=-_ 0 \_n R] _n R

where the functions u, _n, and R have the local values, as in the preceding equation.

For convenience, u 0 is taken to be identically zero. This iterative procedure has the

advantages that it converges rapidly, it is a natural method for machine calculation, and

it yields essentially the exact solution of the integral equation (whereas the parametric

differentiation solution is approximate). The solution of this equation for u is the basis

of the pressure calculation, because after u has been calculated, v is obtained from

the exact boundary condition:

v(x)-- [i + u(x)-]R'(x)

Then Cp can be computed in terms of u and v by usingthe exact expression for

Cp(u,v) (ref. 3, eq. (9.9)).

Since the design procedure relies on performing a pressure calculation and then

reducing the error in it, the accuracy of this calculation is a crucial consideration for

the method. Figures 1 to 3 show some comparisons of computations on known shapes

for which accurate solutions are available just to give an indication of the accuracy of

this pressure calculation method.

It is convenient to use cone calculations to compare theories because exact solutions

are available and because, for such comparisons, it is easy to observe the variation of

the pressure coefficient with Mach number. In figure 1, results obtained by the present

theory are compared with some results presented in reference 1 (p. 468) for a cone with

a half-angle oI 15 °. The data for the exact solution are from reference 4. The Broderick

second-order theory is an expansion in powers of the square of some parameter such as

the tangent of the cone semivertex angle. Thus the second-order theory includes terms

up to the fourth power in this parameter, whereas the first-order theory includes terms

no higher than second degree. For the curve labeled "Linear Equation Solved Exactly,"

the linear solution for u was used together with the exact boundary condition and the

exact pressure coefficient formula. It is seen that even the second-order theory is appli-

cable only over a small Mach number range, whereas the present theory is accurate over
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an extensive range, the only exception being the region within a few tenths of the minimum

Mach number - that is, the Mach number for which the shock detaches.

Figure 2 shows a comparison of results obtained by the present theory with some

data given in reference 5 for a cone with a half-angle of 20 °. The Van Dyke second-order

theory is somewhat more accurate than the Broderick second-order theory in figure 1;

however, it begins to diverge significantly for the higher Mach numbers. Again the pres-

ent theory is inaccurate only within a few tenths of the detachment Mach number. The

significance of the weakness of the theory in this region as far as the overall design prob-

lem is concerned is that if one is designing for a very low supersonic Mach number, it is

expedient to check in a table of pressure coefficient versus cone half-angle and Mach

number to make sure that the value of Cp prescribed at the nose corresponds to a

cone half-angle well within the attachment capability for the design Mach number.

In order to illustrate the application of the direct pressure calculation to nonconical

bodies, figure 3 shows some results for a parabolic body at two free-stream Mach num-

bers. The Lighthill first-order theory is somewhat more accurate than a strict linear

theory. The agreement of the present theory with the method of characteristics is very

good at Moo = 2, with just small deviations at Moo = 4.

These comparisons in figures 1 to 3 indicate that the accuracy of the pressure cal-

culation is good.

BODY SLOPE CORRECTION

Step (4) of the general procedure corrects the body slope so as to reduce the error

in the distribution of Cp.

The change in Cp atapoint x due to a change in R' at point t (for x_->t)

is given by the following expression (modification of equation given in ref. 1, p. 453):

ACp(X) 2AR'(t)[I + u(t)3uFx _ t .7
:

Here U

general, changes are to be made in Cp

calculation can become quite involved.

lizing the fact that U=I when t=x

mate expression for ACp(x):

is the same tabulated function used in step (2), the pressure calculation. In

and in R' at all points. Consequently this

However, it can be shown by an argument uti-

that the following simple equation is an approxi-

ACp(x) = /9(x)

2 R'(x)E1+uCxl 
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This simplification does represent a rough approximation, but it is used here to relate

incremental quantities; furthermore, the error does not have to be eliminated on any one

iteration but just reduced significantly. In this equation the function ACp(x) is simply

the error in Cp(x) obtained from step (3) of the general procedure. The equation is

easily solved for AR' to obtain the new slope distribution for the new body shape:

t t

Rn+ 1 = R n + AR'

SAMPLE APPLICATION

The procedure converges rapidly. Four iterations appear to be adequate even for

the worst cases. Machine time on the Control Data 6600 computer system is about 2 min-

utes for the entire program.

Figure 4 shows the results for one sample application, the design of a static pres-

sure probe. The problem is to design a sensor that will read the free-stream pressure

over a range of Mach numbers.

The sequence of calculations is as follows: The program input was represented by

the solid curve - the design distribution of Cp for a free-stream Mach number of 2.5.

With this input the body shape shown in the figure was computed. Then direct pressure

calculations were made for the shape at the off-design Mach numbers, with the results

indicated by the dashed lines.

It is seen that, if an orifice is located at about the 55-percent station, the probe

should read the free-stream pressure over a considerable range of Mach numbers. It

is interesting that although the detailed body shape is determined by the single design

Mach number, in certain applications like this one it is possible to obtain a result that

is useful over a range of Mach numbers.

CONCLUDING REMARKS

A rapidly converging iterative procedure for designing a supersonic body of revolu-

tion from a prescribed surface pressure distribution has been developed. The method

facilitates comparison of design and off-design performance. Results calculated for a

static pressure probe designed by this method indicated that it could be effectively used

over a range of Mach numbers including the design Mach number.
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DISCUSSION

THEODORE R. GOODMAN, Oceanics, Inc.: Last spring I attended the Canadian

Aeronautical Institute in a joint meeting with the AIAA in Ottawa, and a paper

was presented which used exactly the same six-step procedure but in designing

incompressible bodies, and I think that the two papers together cover the

complete Mach number range. You might be interested to look it up.

BARGER: I am glad you mentioned the subsonic calculation. I have been

working on a similar problem for the subsonic case in an effort to include

the compressibility.

If you use the von K_rman source distribution formula, similar to this

Lighthill formula in the supersonic case, ,again using the local value of 8,

and solve the resultant integral equation by iteration or successive approxi-

mation, then you obtain a pressure calculation which is considerably more

accurate than a similar strictly linear type of computation, especially for

blunt bodies where, as you know, near the nose you have real problems in the

compressible case. But you get a very accurate calculation for the direct

pressure calculation. I haven't been able to perform the inversion a_ yet.

WALLACE D. HAYES, Princeton University: In the supersonic case the

problem is hyperbolic in the sense that there is no upstream influence, and

you do not seem to take advantage of this property in your method. Your

method is the same method that would be appropriate for the subsonic case.

If you were worried, which I guess you aren't, about computational

efficiency, it seems to me you should take this into account. Perhaps yours

uses so little machine time it's not worthwhile.

BARGER: To some extent, this is taken into account in the calculation,

and it has a lot to do with the rapid conversion of the method, and it seems

to be the reason that as yet I haven't been able to do it for the subsonic

case; but that is really a matter of time, a matter of debugging the program.

But it is taken into account in the machine program. I just failed to

mention it.

84



EMPIRICALMETHODFORESTIMATINGPRESSURES

ONELLIPTIC CONES

By George E. Kaattari

AmesResearch Center

SUMMARY
•

A method is presented for estimating the pressure distribution over

elliptical cones at supersonic Mach numbers at angle of attack. The method

is based on an empirical correlation between experimental pressures in the

symmetry planes of elliptic cones and the pressures given by two-dimensional

shock theory. The method is applicable for cones whose ellipticity ratios

b/a range from 1 to 6, and whose maximum semiapex angles are less than 30 °

at Mach numbers greater than 2. Results given by the method are shown to

agree well with experimental values.

INTRODUCTION

There is currently considerable interest in flow solutions for cones at

supersonic speeds. Exact solutions are difficult to obtain, particularly for

elliptic cones at angle of attack. Engineering estimates of pressure distri-

butions can be made by the tangent-cone method or by Newtonian theory. How-

ever, these methods are reliable only for large angle cones of low

ellipticity.

The following analysis will describe the development of a method for

predicting pressure distributions on elliptic cones at supersonic Mach num-

bers. The method is based primarily on unique correlations between pressures

in the symmetry planes of elliptic cones and pressures given by two-

dimensional shock-expansion theory.

NOTATION

A*

a

b

Cp

cpA,

normalized base area coordinate (fig. 3)

cone base vertical semiaxis

cone base horizontal semiaxis

pressure coefficient

pressure coefficient at A*
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Cpcc

%

cP 0

Cp 1

d

kl,k2,k3

Z

r%

no

na

y

Z

ACpo

ACpl

6*

6wo

6w_

6y

6z

circular-cone pressure coefficient, e = 0

two-dimensional or wedge pressure coefficient

cone pressure coefficient at A* = 0, _ = 0

cone pressure coefficient at A* = i, _ = 0

differential operator

interpolation constants

cone length

free-stream Math number

exponent of A*, a = 0

exponent of A*, a 9 0

vertical coordinate from cone axis

horizontal coordinate from cone axis

angle of attack, deg

incremental cone pressure coefficient at A* = 0 due to

angle of attack

incremental cone pressure coefficient at A* = 1 due to

angle of attack

correlation constant (fig. 5)

wedge angle, zero angle of attack

wedge surface angle at angle of attack

cone semiapex angle in vertical plane

cone semiapex angle in horizontal plane

ANALYSIS

Zero Angle of Attack

Typical correlations developed between experimental pressures (refs.

I-4) in the symmetry planes of elliptic cones and the corresponding two-

dimensional or wedge pressures when the wedge angles are equal to the cone
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semiapex angles are shown in figure i. Linear correlations result at a given

Mach number for a family of cones that have the same ratio of base area to
length but differ in cross-section ellipticity. Specifically, the slope is
only a function of Mach number and the ratio ¢_/l. Circular cones are

included because the pressures at this coordinate point may be readily deter-
mined from supersonic handbooks (e.g., ref. S). If, in addition, the value
of the slope at this point were also known, the correlation line would be
completely defined. The pressures in the symmetry planes of any elliptic
cone in the family could then be determined from the correlation line with
the two-dimensional (wedge) pressure coefficient corresponding to the cone
angle in the plane of symmetry and the free-stream Mach number.

Experimentally determined slopes, including those of figure 1 and certain
theoretical values (ref. 6), were plotted on logarithmic scales as a function
of the ratio of circular-cone pressure to wedge pressure• The general, linear

correlation shown in figure 2 was found to result for the indicated wide range
of cone geometries and Mach numbers. The slope of this correlation is closely

(o/cF • The pressure correlation lines of figure 1 arerepresented by Pcc Pw

now fully defined, and the pressures in the symmetry planes of any elliptic
cone in the family become determinable. Next, we attack the problem of deter-
mining the circumferential pressure distribution between the planes of
symmetry.

By apparent mass theory, the chord force of a cone depends only on its
maximum cross section or base area. Experimental indications (ref. 1) are
that the chord forces of elliptic cones of a given length and Mach number also
depend on the base area and are almost independent of ellipticity ratio. New-
tonian theory predicts the same result for cones in a restricted ellipticity
ratio range. It is therefore assumed, with some confidence, that the chord-
force coefficient of an elliptic cone can be considered equal to that of a

circular cone of the same base area and length.

Figure 3 outlines the manner in which the correlations of figures 1 and
2 and the above assumption with regard to chord-force coefficient may be used
to estimate the circumferential pressure distribution on an elliptic cone at
zero angle of attack. A quadrant of an elliptic cross section is shown. The
variable A* represents the ratio of the area of the indicated sector to that
of the whole quadrant. The merit of this variable is that when the pressure
distribution is integrated with respect to A* over the quadrant, the chord
force or average pressure coefficient with respect to the base area results•

the pressure distribution is now characterized by the known pressures Cp0

•nd Cp1 in the planes of symmetry and the area under the pressure distribu-

tion curve which, by the previously stated assumption, is numerically the
chord-force coefficient of an equivalent area circular cone or the mean

pressure Cpc c.

It is now assumed that the pressure variation is a monotonic function of

the argument A* modified by a distorting exponent n o which remains to be
determined. The simple derivation indicated in figure 3 relates the known
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pressures, CP0 , cPl , and Cpc c to the integrated, assumed pressure distribu-

tion which, in normalized form, is a function only of no. Numerical values

for the pressure coefficients fix the value of f(no) and in turn, n o

(fig. 4). The pressure-distribution function may then be evaluated as a

function of A* from equation (2).

Effect of Angle of Attack

It was again possible to correlate the pressures in the vertical plane

of symmetry of cones at angle of attack with two-dimensional wedge pressures

by-an extension to the procedure described for zero angle of attack. On the

left-hand portion of figure 5 is a schematic representation of the correla-

tion technique used. The wedge angle 6wo is determined so that the cor-

responding two-dimensional pressure is equal to the known pressure on the

cone in the vertical plane of symmetry at zero angle of attack. The ratio of

the wedge angle 6w0 to the vertical semiapex angle 6yo is assumed to be a

constant 6" insensitive to angle of attack. Thus, if the cone is at angle

of attack _, the corresponding wedge angle 6w_ to give the same pressure

should be equal to _*(6y + _). The validity of this assumption was borne

out by the good correlation between predicted and experimental pressures

shown on the right-hand portion of figure 5 for the range of variables
indicated.

predicting the effect of angle of attack on the pressures on cones in

the horizontal plane of symmetry is somewhat more involved than in the verti-

cal plane. Figure 6 shows the Newtonian theory result that the change in the

horizontal plane pressure Acpl with angle of attack is equal to the nega-

tive value of the zero angle of attack pressure Cpl times sine squared of

the angle of attack. Also shown on the figure are values from a sophisti-

cated theory of Babenko (ref. 7) for circular cones. A linear correlation

fit to these data in the low angle-of-attack range (0 ° to 5 °) is represented

by the top line for a wide range of Mach numbers and cone apex angles. It

was discovered, however, that the ordinate value _Cpl/sin2 e had to be

multiplied by a hypersonic similarity parameter M_ sin 6z in order to bring

into correlation the data of those cones whose value for M_ sin 6 z was less

than unity. The Newtonian or bottom line was considered to represent data at

= 90 ° since the horizontal plane pressure will then be close to zero by

reason of the resulting large flow expansion, that is, Acpl = -cpl.

A technique for interpolating between the low-angle correlation (0 °)

expressed in the form -ACpl/Cpl = (0.500 + 1.55Cpl)/cpl sin 2 _ and the high-

Z

angle correlation (90 °) expressed as -Acpl/Cpl sin 2 _ was devised as fol-

lows: In figure 7 the line 0-i has the slope (0.500 + 1.33Cpl)/cpl and rep-

resents the low-angle correlation curve. The line 0-2 has the slope of unity

(I) and represents the Newtonian and/or high-angle-of-attack correlation
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curve. The solid curve represents a monotonic interpolation function of

sin 2 e which is tangent to the low- and high-angle correlation curves in the

neighborhoods of their respective validity (sin2 a = 0 and 1.0). The simplest

monotonic interpolation function was found to be a series expression of three

terms with the ordinate _Cpl/Cpl as the independent variable; that is,

In order to satisfy the known slopes and ordinates required of the interpola-

tion function, the values of the coefficients k were found to be

c M sin 6
Pl _ z

kl = 0.500 + 1.33c
Pl

k 2 = -2(k 1 - 1), and k3 = Ckl - 1)

The term M_ sin 6z is included only when its value is less than unity. The

above equation for sin 2 _ was evaluated for various numerical values of kI

to tabulate sin 2 e as a function of ACpl/Cpl. This tabulation was used

to construct curves of -_Cpl/Cpl as a function of angle of attack for var-

ious values of k1. These curves are presented in figure 8. Although fig-

ure 8 is based on circular-cone data, the results are assumed to be valid for

elliptic cones as well.

The pressure in the horizontal and vertical planes of symmetry is shown

now for a cone at angle of attack. Through symmetry, the spanwise derivative

of the pressure distribution at the vertical plane of symmetry is necessarily
zero. These end conditions are not sufficient constraints to define the

pressure distribution reliably, so additional pressure information is

necessary.

The pressure derivatives given by Babenko's data for circular cones in

the horizontal plane of symmetry at angle o£ attack compared with the simple

result of Newtonian theory are presented in figure 9. Surprisingly, a good,

one-to-one correlation results. Again, while this correlation is based on

circular-cone data, it is assumed to be valid for elliptic cones as well.

With this correlation, an additional constraint to the pressure distribution
curve is in hand.

It is convenient to treat the angle-of-attack pressures as increments
to be added to the zero angle-of-attack pressures. Figure 10 is a normalized
plot of circular=cone incremental pressures against A*. It is again assumed
that the distribution is a simple monotonic cosine function of the argument

A* raised to some power ne. The relationship of na to the assumed pres-

sure distribution is easily found by the differentiation indicated in the
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figure. The Newtonian value of _ sin 2 6z sin 2_/tan 6y is substituted for

the end-point slope (dCp/dA*)l , allowing n_ and thus the incremental

pressure distribution to be evaluated.

In the case of elliptic cones, a modification to the Newtonian pressure

derivative given is required. This correction takes into account the fact

that an elliptic cone does not have a constant zero angle-of-attack reference

pressure distribution and although the pressure derivative is zero at A* = i,

it rapidly assumes a value other than zero at A* < I. It was found for a

wide range of cone ellipticity ratios that a good approximation to the zero

angle-of-attack pressure distribution was characterized by a curve whose

pressure derivative in the vicinity of A* = 1 is 2(cPl - CP0). This value

was added to the Newtonian value to give the effective derivative of the

incremental pressure distribution at A* = 1 or

(dcp/dA*) 1 = _ sin2 6z sin 2a/tan 6y + 2(Cp - Cpo )1

COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

Zero Angle of Attack

The present method is compared in figure ii with the tangent-cone method,

Newtonian theory, and experiment (refs. 1-2). The pressures are plotted as a

function of the normalized spanwise coordinate z/b. For cones of large

ellipticity at Mach number 2, the present method agrees better with experi-

ment than does the tangent-cone method or Newtonian theory. The superiority

of the method is less pronounced with respect to the tangent-cone method for

cones with b/a ratios close to unity as is to be expected.

Angle of Attack

The comparison of experimental (ref. 2) and predicted results for

pressure distributions for two elliptic cones at Mach number 6 presented in

figure 12 indicates good agreement. For cones of low ellipticity such as

those shown, the tangent-cone method will give good results at small angles

of attack. For highly elliptic cones at large angles of attack, the present

method is expected to give better results than the Newtonian or tangent-cone
methods.

In figure 13 the present method is compared with a recent line method of

Bazzhin (ref. 8) and modified Newtonian theory for a b/a = 3, elliptic cone

at M_ = 7 and angle of attack of S0 °. The present method is in good agree-

ment with the method of Bazzhin. The Newtonian theory predicts the maximum

pressure well in this case_but the pressure distribution differs considerably

from the other predictions.
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CONCLUDINGREMARKS

It has been shown by comparison with experiment that good estimates of

pressure in the symmetry planes of elliptic cones can be made by utilizing a

simple empirical correlation with two-dimensional or wedge pressures. These

pressures, in conjunction, with experimentally verified constant chord-force

coefficients for a given cone family and Mach number, are sufficient infor-

mation to enable good estimates to be made of pressure distributions for

cones at zero angle of attack.

The effect of angle of attack on pressures in the symmetry planes of

cones was also shown to correlate in a simple manner with wedge theory and

with Newtonian theory.
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METHOD OF DETERMINING PRESSURE DISTRIBUTION
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CALCULATED AND EXPERIMENTAL PRESSURES IN

VERTICAL PLANE OF SYMMETRY
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BASIS OF INTERPOLATION TECHNIQUE
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PRESSURE DERIVATIVES IN THE HORIZONTAL PLANE OF
SYMMETRY FOR CIRCULAR CONES
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DISCUSSION

ERNEST O. MARCHAND, ARO, Inc.: This is not in the form of a question

but a comment that may be useful to some people here. There is a program,

available upon request, by D. J. Jones (Aeronautical Report LR-507) of the

National Aeronautical Establishment, Ottawa, Canada, that is capable of calcu-

lating elliptic cones at angle of attack. To my knowledge, this is the only

readily available program. It runs very quickly for all the sharp cones. I

think the 360-50 running time is only a minute and half.

This report seems to have gotten a rather limited distribution, and many

people don't know about it. I thought it appropriate that I should bring it

up.

LORNE C. DUNSWORTH, CCI Marquardt Corp.: I wonder if you would comment

on the possibility of extending this technique to elliptic ogives at angle of
attack. Is there a way to do it?

KAATTARI: .I don't know. I have thought of it, but I don't know if it

is possible. I couldn't say at this time. I'd be glad to try it.

It may be that one could use Prandtl-Meyer flow and start from the cone,

but I don't know, it might be quite difficult. For the angle-of-attack case

equal to zero it might be feasible, but for the angle-of-attack case it would
be quite difficult.
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IMPROVEMENT OF WING-BODY INTERFERENCE

THEORY FOR HYPERSONIC SPEEDS

By William C. Pitts

Ames Research Center

SUMMARY
"NT0- 13 7

Calculated results from two theories are found to agree equally well

with experimental data for the lift-curve slope and for the stability

derivative for the Mach number range 5.3 to 10.7. The results agree

despite the fact that one theory predicts a large effect of wing-body inter-

ference and the other neglects interference effects. Theoretical examination

of load distributions on the body and wing, with and without interference

effects, verifies that, for the example considered, the total force and moment

is the same by both theories, but the load distributions are very different.

INTRO DUCTI ON

The subject of wing-body interference has been extensively explored

both theoretically and experimentally for the subsonic and supersonic speed

ranges, but not very much has been done in the hypersonic speed range. In

reference 1 an extensive comparison was made between theory and experiment

for about 70 sets of data of widely different configurations for subsonic,

transonic, and supersonic speeds up to Mach number 2. It was found that the

lift-curve slope was predicted within i0 percent for all sets of data and

that wing-body interference accounted for between 20 to 30 percent of the

lift of the wing-body combinations. The purpose of the present program

was to see if this large and favorable wing-body interference effect per-

sisted to the hypersonic speed range.

TOTAL FORCE AND MOMENT

In lieu of an adequately established hypersonic Mach number theory,
the supersonic theory of reference 1 was used as the first tool of the

investigation. This theory was used to estimate the pitching moment and

the lift-curve slope for a model that was tested at Ames (ref. 2). The
model is shown in figure 1. The body has a fineness ratio 12 and a Sears-

Haack nose. The wing has a delta planform with a 70 ° leading-edge sweep

angle. The wing is 4 percent thick with flat surfaces; the bottom

surface would pass through the body axis if extended.

Precedingpageblank
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In figure 2, experimental data for CL and _Cm/3C L are compared

with calculated results from two theories. Both of these quantities are

predicted reasonably well by the theory of reference 1 (NACA Rep. 1307)
within the Mach number range 5.3 to 10.7. This good agreement plus the fact
that 25 percent of the lift is due to wing-body interference effects, accord-

ing to the theory, suggests that wing-body interference is important at
hypersonic speeds as well as at supersonic speeds. However, the tangent-
cone, tangent-wedge method also predicts the experimental data well (except
for _Cm/SC L at M = 10.7) and it includes no interference effects.

Obviously, then, some compensating effects are present in one or both of
these theories, and the question of the importance of wing-body inter-
ference is not resolved by this comparison.

THEORETICAL LOAD DISTRIBUTION

Correction Factors

To study this problem further the program was extended to look at the
load distribution on the wing-body combination. The wing-body interference
theory of reference 1 could not be used for this extension because it

gives only the total force and moment. Instead, the linearized, quasi-
cylindrical theory of Nielsen (ref. 3) was chosen for studying the load
distribution. This theory has been demonstrated to be applicable at super-

sonic speeds by comparison with experiment (ref. 4) but several assumptions
made in the theory must be examined before it can be applied to the hyper-

sonic speed range. The first assumption is that the slender-body theory
of Beskin properly predicts the body upwash. Other assumptions are that in
the region of the wing the local dynamic pressure and the local Mach number
are the same as in the free stream. These assumptions will now be examined
in turn beginning with the body-upwash assumption.

The mechanics of body upwash are summarized in figure 3. Any body
inclined at an angle a to a flowing gas will have a normal component of

velocity VN which streams around the body in the cross-flow plane. Then,
according to the slender-body upwash theory of Beskin, the local angle of

attack in the wing plane varies along the span as

aL = [I + (a/r)2]a (I)

where a is the body radius, and r is the radial coordinate. At the
wing root, where a/r = i, the wing is effectively flying at twice the angle

of attack of the body. This then is the reason wing-body interference is
favorable.

This upwash model has been found to be adequate at low supersonic Mach
numbers but until recently its use in the hypersonic speed range has not

been justified. Now the method-of-characteristics calculations by Rakich
(ref. 5) have shown that upwash varies in a manner similar to the Beskin
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equation except for an empirical factor c.

_L = [i + o(a/r) 2] c, (2)

This was found to be true for Mach numbers up to 10.7. The term in the

brackets is then a factor that corrects the free-stream angle of attack to

the local angle of attack.

The correction factors for Mach number and dynamic pressure will now

be developed with the aid of figure 4. The sketch at the top of the figure

shows a wing mounted on a cylindrical-body section. The theory of ref-

erence S will give the pressure distribution aft of the wing Mach wave. The

method of reference 5 will give body-alone pressures forward of the wing.
For this figure the subscript _ refers to free-stream conditions and the

subscript L refers to conditions near the cylindrical part of the body.

Calculations by the method of characteristics show that although flow

parameters vary rapidly near the body nose they become virtually independent

of axial distance in the subscript L region. For Mach numbers less than

2 the shock is relatively weak and the subscript L values are essentially

equal to the subscript _ values. At hypersonic speeds they can differ

significantly, and the pressure, P2, cannot be calculated directly in terms

of the free-stream conditions by simple theories. However, it can be cal-

culated in terms of subscript L conditions because they are essentially

free-stream conditions to the wing. The pressure coefficient according to

linear theory is then

P2-PL 2a L

qL 8L

The pressure coefficient can then be expressed in terms of free-stream

conditions by simple algebraic manipulation of equation (3)

C3)

P2-P- 2_ _ qL 8-) PL-P.q_= B q. BL + q® (4)

The second term of equation {4) is generally large in the body-nose region,

and must be retained there, but calculations by the method of character-

istics show that even for M = 10.7, this term approaches zero aft o£ the

nose and can be neglected in'the subscript L region. Thus the pressures

on the winged region of the combination can be expressed in terms of free-

stream conditions and three correction factors. The first is the upwash

correction factor aL/a given by equation (2). The other two factors,

qL/q_ and 8./B L correct q and 8 to local values. The product of these

three factors is called I. Then the pressures on the winged region of the

wing-body combination can be expressed in terms of the product of free-

stream conditions and the total correction factor.

P2-P_ = l/2_ CS)
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Although _ and its components are virtually independent of axial distance

they do depend on r. Calculations by the method of characteristics
(ref. 5) show that the radial variation can be very closely approximated by

the _(a/r) 2 form of equation (2). The pressure distributions that will be

presented later have had this correction factor incorporated into the
calculations.

Figure 5 shows how these factors vary with Mach number at the wing-

body juncture. Note that at Mach number 2 both 8L and qL are essentially

equal to free-stream values so that the assumption of this fact (for

M _ 2) in reference 3 was valid. Also the use of slender-body theory to

e_timate body upwash was valid in this Mach number range. As the Mach

number is increased from 2, each of the individual correction factors

diverges from the slender-body theory value. However, the effects of these

divergences are compensating and, fortuitously, the net effect is that _,

as calculated by the method of characteristics, remains very nearly equal to

the slender-body theory value for _ throughout the Mach range.

Calculated Loading

The effect of these correction factors is shown in figure 6. The figure

shows the chordwise pressure distribution at the wing-body juncture for the

model shown in figure l. The pressure coefficient P and the axial distance

x from the wing leading edge are presented in normalized forms 8P/a and

x/Sa, where a is the free-stream angle of attack. All three curves were

calculated using the quasi-cylindrical theory of reference 5. The only

difference between the curves is the manner in which the correction factor is

calculated. For the upper curve the method of characteristics was used to

calculate I. For the middle curve slender-body theory was used, and for the

lower curve no correction was used for upwash, 8L or qL. As would be

expected from the results of figure 5, it makes little difference whether the

method of characteristics or slender-body theory is used to calculate the

correction factor. However, there is a large difference if no correction is

used for local flow conditions.

Figure 7 shows the same thing for the entire wing. The r/a = i,

or wing-body juncture plane, shows the same pressure distribution as fig-

ure 6. The pressure distributions in the r/a = 2 and r/a = 5 planes are

also shown. In all planes, the upper curve is the pressure coefficient

with correction factor and the lower curve is the pressure coefficient for

no correction factor. All along the wing leading edge the pressure is the

same as that of an isolated flat plate inclined at the local angle of

attack. At the wing root (r/a = I) the pressure starts decreasing

immediately in the chordwise direction. At r/a = 2 the pressure rises in

front of the Mach wave from the wing root leading edge and then decreases

behind the Mach wave. The rise is due to this wing element experiencing

the influence of inboard elements which are flying at higher effective

angles of attack. At r/a = 5 the wing is entirely in front of the Mach

wave and the body upwash effect is small so that the pressure is nearly

constant over the entire chord and the two curves are very nearly the same.
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In contrast to the varying pressure level predicted by this theory,

the tangent-wedge method predicts a uniform pressure over the entire wing,

indicated by the three hash marks at the leading edges of the three radial

stations. This is also the pressure level obtained if the interference

theory pressure distribution is averaged over the entire wing. Thus the

lift predicted on the wing is the same for both theories. The interference

theory, however, predicts a larger nose-up moment on the wing than does the

tangent-wedge method. This nose-up moment is compensated for by a nose-

down moment contributed by interference pressures from the wing acting on

the afterbody. This is shown by the pressure distribution on the body in

figure 8. To simplify the isometric drawing the body is shown as a flat

surface in the wing plane. In this view the Mach wave appears as a

straight line rather than a helix around the cylindrical body. Because

the cylindrical-body section generates no lifting pressure according to the

theory of reference 3, this pressure is due entirely to interference on the

body from the wing.

CONCLUDING REMARKS

In summary, two theories have been compared. One of them includes

wing-body interference effects and the other does not. The two theories

agree with each other and with experimental measurements of the total

lift and pitching moment for the wing-body combination considered. They

also agree on the amount of lift on the wing and on the body. However,

they differ on the distribution of lift and hence on the moment acting on

the wing and on the body. Fortuitously these differences cancel. The

question still remains as to which, if either, of the two theories is

correct. The answer to this question awaits experimental evidence from

programs now in progress.
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CORRECTION FACTOR FOR BODY UPWASH
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VARIATION OF CORRECTION FACTORS WITH MACH NUMBER
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PRESSURE DISTRIBUTION ON WING
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DISCUSSION

A. R. GEORGE, Cornell University: If these sigmas and lambdas were

determined for this one shape that you showed, do you expect that you would

get this close an equivalence between the slender body and the characteristics

calculations in general?

PITTS: We are talking now about the cylindrical section of bodies. I

don't think that the nose shape is going to have too much of an effect if you

get far enough aft of the body shoulder.
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THEORETICAL STUDIES OF VORTEX FLOW ON SLENDER

WING-BODY COMBINATIONS

By E. S. Levinsky and M. H. Y. Wei

Air Vehicle Corporation

and

Ralph L. Maki
Ames Research Center

NTo:2 35s
S U_ARY - - _ ,._

An analytical procedure is presented for determining the nonlinear lift
and pressure distribution on slender wing-bodies with leading-edge vortices.
The theory is restricted to flows which satisfy the usual constraints imposed
by slender-body theory.

Both conical and nonconical developments are presented. The theoretical
results are evaluated by comparing with wind-tunnel force and pressure data.

Both theory and test data show large increases in lift due to leading-edge
vortices for even the smaller size strakes. Good correlation was obtained

over the complete angle-of-attack range for cones with strakes of 50 percent
of the body radius or greater. For these configurations the lift was approxi-
mately two times the linear theory value at angles of attack a equal to
twice the strake semiapex angle 6. For cones with 25-percent and 10-percent
strakes, good agreement was found except in the intermediate range
2 < a/_ < 4.

Calculations for several nonconical configurations also agreed well with
test data. Among the nonconical geometries considered were a cone with a fil-

leted double-delta wing, a wing-body with a curved nose and strakes, and a
conical body with variable incidence strakes.

INTRODUCTI ON

The present paper deals with the calculation of the nonlinear lift and

pressure distribution on wing-bodies with leading-edge vortices. Such vorti-
ces are known to increase the lift at large angles of attack to several times
that predicted by the usual linear analyses, thus invalidating the linear
approach at large angles of attack. Both conical and nonconical theories are

presented; however, the analysis is limited to configurations for which the
usual slenderness assumptions apply.

A slender wing-body configuration with leading-edge vortices is shown in

figure 1. The model, photographed in the Ames 7- by 10-Foot Wind Tunnel, is
a blunted cone with small-span wings (strakes) at an angle of attack of
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approximately 30 °. The vortices are known to have a pronounced effect on lift
and pressure distribution, hence the motivation for the present analysis. The
well-known model for the leading-edge vortex consists of a feeding spiral

sheet originating from the wing tip and winding inward into a central vortex

core (see fig. 2). This model will be used in the subsequent analysis.

The general type of configuration geometry to be studied is also shown

in figure 2. Effects of body cross section, relative strake-to-body size,

strake dihedral, nose blunting, variable strake sweep angle, and variable

strake incidence angle are included in the theory. Thus, the theory should

be of use in evaluating the low-speed approach, landing, and control capabil-

ities of recoverable booster or spacecraft configurations of high volumetric

efficiency.

Several types of vortex flows have been observed for slender bodies and
wing-bodies. For a body alone at a large angle of attack, two strong vortices
are known to form on the leeward side (refs. 1 and 2) (see upper sketch in

fig. S). The separation point is determined by viscous effects for this case,

and no complete theory which includes determination of the separation point
has as yet been obtained. The present analysis deals with wing-body combina-
tions for which the separation point is fixed at the wing leading edge (middle

sketch in fig. 5). A priori knowledge of the separation point greatly simpli-
fies the theory and enables an inviscid formulation to be used. It is conceiv-
able that with very small span strakes the leading-edge vortex may influence
the flow only locally in the region of the leading edge. In this case, body
vortices could still occur as sketched in figure S. Although the simultane-
ous occurrence of both body and strake vortices has not been confirmed visu-

ally, anomalous data obtained with small-span strakes can be explained by this
hypothesis, as will be shown later.

Considerable research has been carried out on the leading-edge vortex
for low aspect ratio wings and bodies as summarized in figure 4. The first
successful analysis was carried out by Brown and Michael (ref. 3), who treated

the conical flow past a flat delta wing. They used a simplified model for the
vortex in which all the vorticity was lumped into the vortex cores. The vor-

tex cores were joined to the wing tip by a cut. No feeding sheets were
included. Their calculations gave the correct overall trend for the variation
of lift with angle of attack. However, the vortex location was calculated to
be too far outboard, and the overall lift was significantly overpredicted.

Mangler and Smith (ref. 4) improved the formulation by also including a
feeding vortex sheet of a specified shape. This restriction was later
removed by Smith (ref. S) who considered a segmented vortex sheet and deter-
mined both its strength and position. The calculations by Smith (ref. 5)
agreed remarkably well with test data. The present authors have generalized
the conical Smith procedure to apply to bodies with small span strakes
(ref. 6), and have also extended the formulation to nonconical flows
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SYMBOLS

vertical half-dimension of elliptical body; also, radius of

circular body

horizontal half-dimension of elliptical body

lift coefficient based on planform area

lift coefficient based on force and area ahead of station x

pitching-moment coefficient about apex based on body length and
planform area

pitching-moment coefficient about apex based on moment, length,
and planform area ahead of station x

number of vortex sheet segments

inward normal to vortex sheet

static pressure (Ap = p - p_)

free-stream dynamic pressure

Reynolds number

polar radius in physical plane

component of free-stream velocity along x

complex velocity potential

body-centered Cartesian coordinates

complex variable (y + iz)

complex variable in transformed crossflow plane

angle of attack

separation angle

vortex strength

strake semiapex angle

parameter in transformation Z* = Z*(Z)
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@
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@

polar angle

parameter in transformation Z* = Z*(Z)

velocity potential jump across vortex sheet

velocity potential

angle between r and tangent to sheet

distance along vortex sheet

W

m

v

mean value

isolated vortex core

Subscripts

r:

complex conjugate

Superscript

DISCUSSION

Conical Analysis

The usual slender-body approach is assumed in the analysis. The major

steps in the theory have been outlined in figure 5. The governing differen-

tial equation is the Laplace equation in the crossflow plane Z = y + iz. The

linear theory requires that the tangency condition be satisfied on the surface

of the wing-body. A simple means for accomplishing this is to conformally map

the wing-body into a vertical slit in the transformed Z* plane. A general-
ized transformation for carrying this out is shown in figure 5, and applies

to wing-bodies of elliptical cross section (b/a is the ratio of the major-to-

minor axis) and of arbitrary dihedral angle. The quantities qo and _o

are defined in reference 6.

In the nonlinear theory, additional boundary conditions, as listed in

figure 5, must be satisfied to determine the strength and position of the vor-

tex core and sheet. A typical six-segment sheet and vortex core are shown in

figure 6. The core is joined to the end of the sheet by a cut. The Kutta

condition, which states that the velocity is finite at the wing tip, provides

a single algebraic expression _or determining the unknown vortex strengths and

positions. Two additional algebraic relations are provided by the zero force

condition, which requires that the resultant force on the vortex and cut must

vanish. The pressure and normal velocity boundary conditions, which state

that both pressure and normal velocity _ust be continuous across the vortex
sheet, are satisfied at the midpoint of each sheet segment. These provide 2N

116

[

R



additional algebraic relations making a total system of 2N + 3 equations.

The unknowns to be determined are the vortex core strength, the two vortex

core position coordinates, the N vortex sheet strengths, and the N vortex

sheet radius vectors.

The equations are nonlinear and must be solved by iteration. This is

accomplished with a computer program based upon the iteration procedure origi-

nally developed by Smith (ref. 5). Sample results are presented in figures 7

through 9. Additional results may be found in reference 6.

The results in figure 7 are typical of calculations for bodies with

strakes of exposed semispan equal to 50 percent of the body radius (50-percent

strakes) or greater. The corresponding test data in this and subsequent fig-

ures were obtained in the Ames 7- by 10-Foot Wind Tunnel for models of differ-

ent semiapex angle 6. Test conditions varied between a dynamic pressure of

50 psf and 75 psf. Good agreement between the nonlinear theory and test data

was found over the entire angle-of-attack range shown (except when stall or

vortex breakdown occurred, viz., at values of angle of attack a > 30°).

Figure 8 shows a similar comparison with 10-percent strakes. Good

agreement with test data is found up to _/_ = 2 or 2.5. In the range

2.5 < e/6 < 4, the theory was consistently below the test data. Beyond

_/6 = 4, the theory becomes multivalued, and three possible theoretical solu-

tions exist for the same e/6. The lower nonlinear solution gives a weak

leading-edge vortex lying close to the wing tip, whereas the upper solution

contains a strong vortex located well above the wing. The middle nonlinear

solution results in a vortex of intermediate strength. The test data, on the

other hand, form a smooth transition between the theory at low _/6 and the

upper theoretical solution at large _/6. No experimental evidence of multiple
lift values was found.

The failure of the theory in the range 2 < a/_ < 4 may be due to the

existence of body as well as leading-edge vortices, as postulated in the

mixed case of figure 3. The estimated lift increment from body vortices has

been added to the calculated nonlinear lift in figure 8 in order to check

the magnitide of this correction.

It is of interest to examine the nonlinear analysis in the limit of

vanishingly small strake size and to compare with test data for a cone. The

separation angle 8 must now he varied parametrically, since as mentioned in

the Introduction, 8 is no longer fixed by the strakes, but is determined by

viscous effects. The resulting calculations are shown in figure 9 and indicate

that the lift increases with decreasing separation angle. No nonlinear solu-

tions were found for _/6 < 2, irrespective of the value 8. This is in agree-

ment with previous work by Bryson (ref. 2), who used the Brown and Michael

model for a cone.

Nonconical Analysis

The nonlinear theory has been extended to nonconical configurations.

In the nonconical theory, the tangential flow and Kutta conditions are
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essentially unaltered from the conical theory. The remaining boundary

conditions, however, are no longer algebraic as was the case for conical flow.

The zero force condition on the vortex and cut now becomes a first-order

ordinary complex differential equation (see fig. i0), and is essentially the

same as originally used by Bryson (ref. 2). The pressure continuity condition

for a general nonconical vortex sheet becomes a quasilinear first-order partial

differential equation. The general solution to this equation was obtained and

is shown in figure i0. The continuity of normal velocity condition for a gen-

eral vortex sheet is given by the third equation in figure I0. (Geometric

definitions for some of the symbols in figure i0 may be found in figure 4.)

The system of algebraic and differential-integral equations describes

an initial value problem starting from a given axial station. The system has

been solved numerically by assuming the flow to be conical ahead of the ini-

tial station. Thus, the conical theory is used to generate initial data for

the nonconical theory. Some sample results are presented in the following

figures.

Calculated values of CL(X), Cm(X)/CL(x), and of a function proportional

to vortex core strength up to station x are shown in figure ii for a cone

with a double-delta wing and fillet at e = 24 °. The theoretical results

appear to approach the conical asymptotic values for 6 = 18° .

A comparison of the calculated CL and C values with wind-tunnel datam
is shown in figure 12. A single theoretical point at _ = 24 ° and the known

linear theory slope at a = 0 ° were used in establishing the faired curve

shown in figure 12.

The calculated upper surface spanwise pressure distribution for the

same configuration is compared with test data in figure 13 at two axial sta-

tions. The theory agrees reasonably well with the test data for the filleted

wing at both stations. Removing the wing fillet significantly affected the

pressure at x = 0.60, directly behind the break in sweep, but had only a

minor effect at the downstream station.

Additional comparisons of the nonconical theory with wind-tunnel test

data are included in figures 14 through 16. Thus, figure 14 shows a compar-

ison of the calculated values of CL and Cm versus e with test data for
a configuration consisting of a body with an ogive nose and curved 50-

percent strakes. A comparison of upper surface pressure data at e = 24 °

is shown in figure 15 for the same configuration.

The nonconical theory was also used to calculate the effect of changing

the strake incidence angle E over the rear 45 percent of a conical wing-body

(control effectiveness). The calculations for C L versus _ are compared with

test data on figure 16.
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CONCLUSION AND RECOMMENDATIONS

Analytical procedures have been developed for calculating the nonlinear

lift and pressure distribution on conical and nonconical wing bodies with

leading-edge vortices• Except for relatively small strakes in the range
2 < a/_ < 4, agreement between both the conical and nonconical theories and

subsonic test data was highly encouraging.

The nonlinear theory is at present limited to flows with lateral symmetry

and to configurations which satisfy the geometric and Mach number constraints

of slender-body theory. Removal of some of these restrictions would increase

the usefulness and applicability of the theory. Thus, removal of the require-

ment for lateral symmetry would allow analysis of yawed flight and the evalu-

ation of nonlinear lateral stability. The formulation of a companion theory

for supersonic flows also appears to be highly desirable, since leading-edge

vortices have been observed at Mach numbers well above one (ref. 7). Exten-

sion of the theory to include nonslender effects arising from the apex,

trailing edge, step control deflections, etc., although needed from a practical

standpoint, is considered very difficult to accomplish.
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VORTEX FLOW VISUALIZATION

Figure 1

TYPICAL NONCONICAL SLENDER-BODY CONFIGURATION

WITH VORTEX SHEET

VORTEX SHEET

VORTEX CORE

VARIABLE INCIDENCE
FOR CONTROL

Figure 2
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SOME VORTEX FLOWS

• BODY ALONE

• SEPARATION POINT VARIABLE

• DEPENDENT ON VISCOUS EFFECTS

• STRAKE/BODY

(TREATED IN CURRENT ANALYSIS)

• STRAKE VORTICES DOMINANT

• SEPARATION FIXED BY SHARP L.E.

• MIXED

Figure 3

RELATION TO PREVIOUS WORK

INCOMPRESSIBLE FLOW

BROWN & MICHAEL ,'"

1955 t

MANGLER1959& SMITH _ L_

1966

ISOLATED VORTEX CORE

NO FEEDING SHEET

ADDED FEEDING SHEET

OF SPECIFIED SHAPE

SEGMENTED FEEDING

SHEET

CURRENT1968ANALYSIS

1969

GENERALIZED TO

STRAKE/BODY

CONFIGURATIONS

GENERALIZED TO

NONCONICAL FLOW

Figure 4
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CONICAL ANALYSIS

SLENDER-BODY THEORY

o2_ o2_
1

OY 2 + _ = 0

• TANGENCY CONDITION (LINEAR THEORY)

TRANSFORM STRAKE/BODIES (Z PLANE) INTO

VERTICAL SLIT (Z * PLANE)

o_o,,{EzZ,2 ( I ^ b 2-(b2-o z I/2

• ADDITIONAL CONDITIONS (NONLINEAR THEORY)

KUTTA CONDITION

ZERO FORCE CONDITION

PRESSURE CONTINUITY CONDITION

NORMAL VELOCITY CONTINUITY CONDITION

Figure .5

NONCONICAL ANALYSIS SYMBOLS

V --_ r

J___y

v_

W=_-i$
_ = _ JUMP ACROSS SHEET

m = MEAN _LUE ON SHEET

Figure 6
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COMPARISON OF THEORY WITH SUBSONIC EXPERIMENT
CIRCULARCONE,50% STRAKES

SYMBOLS DENOTE DATA FOR
6o_< _ _< 12 °

50 _<q-< 75psf
1.4 _< R _< 1.6 x 10 6 (per ft)

160

I?.O
0_
0
o

60
8O

N
t-

d 4o

N%,;#¢R
EXPERIMENTo_

P,_ LINEAR

__HEORY __ __

2 4 6 8

sin a/t0n 8

Figure7

COMPARISON OF THEORY WITH SUBSONIC EXPERIMENT
CIRCULAR CONE, IO% STRAKES

SYMBOLS DENOTE DATA FOR
4.4 ° _< S 5 I I °

50 _< q < IOOpSf

1.4 < R < 1.8 x I0 _5 (per ft)

160

120

o
¢.)

80
N

C

2

d 4o

0

BODY VORTEX _IONLINEAR

2 4 6 8
sin a/tan 8

Figure8
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COMPARISON OF THEORY WITH SUBSONIC EXPERIMENT
CIRCULAR CONE WITHOUT STRAKES

8O

60
o
o

6o
40

t-

..J_ 20

SYMBOLS DENOTE DATA FOR
4"- < 8 -< I0 ° ASSUMED

50 -< q _<IOOpsf ,B
1.4 _<R -< 1.8 x I06 (per ff) 40 °

/
/

/ 44 °

/ / / 50°
NONLINEAR /_ / _6 o

THEORY \ //-///" "

/_///

.//._.',,'5_/ _ LINEAR

J "THEORY, I I CL_/Traaz

2 4 6 8

sin a/ton 8

Figure9

NONCONICAL ANALYSIS

• ZERO FORCE CONDITION (SAME AS BRYSON, 1959)

dFv dI_.._ Fv / I \ dZv-1
v _'_- (Zv-Zm) = T'v + _--_i _-_v)- v-_'x-J Z=Zv

FORCE ON CUT FORCE ON VORTEX

• PRESSURE CONTINUITY CONDITION

&" = (aA¢)/80")[ O'-/(a'/aO')m, V dx1

• NORMAL VELOCITY CONTINUITY CONDITION

8 x

r(x, 8)=./'r cot, dO-I/_ dxo sin_b

• INITIAL VALUE PROBLEM

START WITH CONICAL SOLUTION

Figure ].0
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NONCONICAL THEORY
CONICAL BODY WITH DOUBLE-DELTA WING

a =24 °

1.6

1.2

.8

.4

0

Cm(X)_J \

f (l_v)_/"_ CONICAL
_/ ASYMPTOTES

.2 .4 .6 .8 1.0
AXIAL DISTANCE, X

Figure 11

COMPARISON OF THEORY WITH SUBSONIC EXPERIMENT

CONICAL BODY WITH DOUBLE-DELTA WING

--B-- THEORY
EXPERIMENTo

1.2

THEO/ 
_1 LIFT

J_

J _1 I I

0 20 40

a, deg

.8

CL

.4

o

THEORY

0 - .4 -.8

Cm, ABOUT APEX

Figure12
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--THEORY

SPANWlSE PRESSURE DISTRIBUTIONS
CONICAL BODY WITH DOUBLE-DELTA WING

a = 24 °

EXPERIMENT
0 NO FILLET

[] WITH FILLET

0.6 0.8

0 .2 .4 .6 .8 1.0

FRACTION OF LOCAL SEMISPAN

-3 I X=0.6

q _f

0 .2 .4 .6 .8 1.0

Figure 13

LIFT AND MOMENT COEFFICIENTS
OGIVE NOSE BODY WITH CURVED 50% STRAKES

0 EXPERIMENT--x m THEORY

1.0

.8

.6

C L

.4

.2

NONCONICAL

THEORY

×

_l LINEAR

I0

THEORY

I I I

20 30 40 0 .6 .8

C)

X

/
I I

.2 .4

-C,,vt

Figure 14
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PRESSURE DATA

OGIVE NOSE BODY WITH CURVED 50o/o STRAKES

O EXPERIMENT

THEORY

Xo/Xf=O.43

0 20 40 60 80 IO0

UPPER SURFACE ONLY

0.43 0.71

Xo/X f =0.71

-2 BODY =I_ STRA_-_

0 20 40 60 80 IO0

LOCAL SEMISPAN, percent

Figure 15

LIFT COEFFICIENT
CONE WITH 50o1o VARIABLE INCIDENCE STRAKES

GL

1,0

.8

.6

.4

.2

0.55

THEORY 0

--x-- E = 0 ._E]

_ EXPERIMENT

0 E= 0

E = -2 °
O ( = -4 °

O E = -6 °

I
I 0 20 30

a, deg

Figure 16
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DISCUSSION

CAPT.DAVIDFINKLEMAN,Air Force Academy: I'd like to hear your comments
on the procedure due to Sacks, which introduces discrete vortices. Perhaps
you classified this with empirical methods, but it need not necessarily be so.
By increasing the number of vortices you arrive at a completely force-free
vortex sheet, rather than one that is only force free in the mean, such as the
Brown-Michael approach.

LEVINSKY: Well, I know there have been several methods. One I am
familiar with is by Nielsen Engineering, where they had a large numberof free
vortices representing the sheet.

FINKLEMAN:I say this in particular because I know the Sacks approach
seemsto indicate good agreement for the same configurations you have

examined. This was a NASA Contractor Report a couple of years ago. [A. H.

Sacks, R. E. Lundberg, and C. W. Hanson, "A Theoretical Investigation of the

Aerodynamics of Slender Wing-Body Combinations Exhibiting Leading-Edge Separa-
tion," NASA CR-719, March 1967)

LEVINSKY: If you take more turns of the vortex sheet than we have shown,

eventually the force-free condition of the core and the cut should become less

and less significant.

FINKLEMAN: Problems may arise with this method when one attempts to

trace the wake behind, for instance, an arrow-shaped wing. If you have dis-

crete vortices they are easy to follow, but with a sheet it is not quite clear
how the wake could be followed.

LEVINSKY: We have used a slender-body approach. We are constrained to

very small changes in the x direction of the configuration. If you go

beyond the base of the body the vortices are no ]onger growing in strength, as

they are in these cases. They become free. We are not talking about that

kind of a case. The sheet would tear. You are not dealing with free vortices.

This is a feeding sheet model.

FINKLEMAN: One other short question. You say you have handled cases at

incidence. Am I correct in assuming that you are using the solutions to

Laplace's equation for a shoulder or high-wing configuration as against one

with only a mid-wing?

LEVINSKY: We have carried out a calculation with two degrees of

incidence, and it is in the written version. As for mid-wing versus high

wing, this is a wing displacement effect whereas the incidence effect was

considered due to a change in wing slope only. The displacement effect was

not included in our incidence calculations, just the slope effect.

We have compared our results with test data, and the comparison is
reasonable.
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FINKLEMAN: And then you always took the wing, you said, along the
diameter?

LEVINSKY: Yes, we used a mid-wing configuration.

RAYMOND SEDNEY, Martin Company: Can you tell us the origin of this

multiple-valued nature of the solution?

LEVINSKY: Yes, this occurred in the conical cases. With small strakes

it turns out that you can get three different solutions which satisfy all of

the boundary conditions. We have taken the Brown and Michael approach without

any vortex sheet and found the same results. In other words, there appear to

be three different strengths and three different positions for the vortex

core and sheet which satisfy the force-free condition, the Kutta condition,

etc. This is a consequence of the fact that there may be more than a single

solution to a set of nonlinear equations.

ROBERT L. TRIMPI, NASA Langley Research Center: I may have missed it,

but I don't think you told us what computer you were using.

LEVINSKY: We used a CDC-3600.

129

_II II II li Ii II II Ii il II li li li It II _ il g I_





METHODS FOR CALCULATING NONLINEAR CONICAL FLOWS

By Jerry C. South, Jr., and E. B. Klunker

Langley Research Center '_ N 7 0 : 2 1 3 5 9

INTRODUC TION

In 1935 Busemann (ref. 1) introduced the concept of a general conical flow field as

one in which the velocity vector is constant along any ray emanating from a common point

in the flow. Solutions for such self-similar conical flows are of interest to the aerody-

namicist for a number of reasons, among which two are: first, significant regions of the

flow about many practical configurations are conical or nearly so (moreover, the super-

sonic flow past any pointed body with a shock wave attached at the apex is conical in the

immediate neighborhood of the point) and, second, conical bodies and wings are the sim-

plest class of three-dimensional shapes and thereby provide "bench-mark" cases for both

experimental and theoretical studies in inviscid supersonic flow.

Two basic approaches are available for the numerical development of "exact" 1

nonlinear conical solutions:

(1) Distance-asymptotic methods, where approximate distributions of the flow vari-

ables and shock-wave shape are used near the apex as initial values for continuing the

calculation downstream by some three-dimensional computation scheme. The calculation

proceeds until conical similarity conditions are sufficiently satisfied.

(2) Methods which invoke the conical self-similarity and thereby reduce to two the

number of independent variables are referred to simply as "conical" methods for brevity.

Both general approaches have their merits. The distance-asymptotic techniques

develop the solution as a well-posed initial-boundary problem for equations of hyperbolic

type, and convergence is "almost" guaranteed from both physical and theoretical consid-

erations. However, to achieve a satisfactory solution in many problems where a fine

mesh is needed, these methods require a large amount of computer storage and time.

The conical methods reduce the problem to two dimensions but in the more difficult form

of a free-boundary problem for equations of elliptic or mixed type. In fact, many of the

conical methods are similar to methods used for solving the blunt-body problem.

The methods of references 2 to 7 are examples of the distance-asymptotic method.

References 2, 3, and 4 consider circular cones at angle of attack, references 5 and 6

1Exact in the sense that the only approximation made is the reduction of the gov-
erning partial differential equations to ordinary differential equations or algebraic equa-
tions by using finite-difference expressions for the derivatives with respect to one or
more of the coordinates.
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include cones of elliptic cross section, and reference 7 presents calculations for the com-

pression side of conical delta wings with shock wave attached not only at the apex but also

along the swept leading edges.

Examples of conical methods appeared as early as 1929, when Busemann (ref. 8)

constructed the axisymmetric conical flow by numerical-graphical construction in the

hodograph. Reference 9 cites many of the approximate and exact conical methods docu-

mented up to about 1964; therefore, they are not all discussed in the present paper.

Most recent conical methods are of the "inverse" type, in which an analytic function of

two or more parameters is assumed for the conical shock wave and the governing partial

differential equations are solved by marching inward until some body shape is obtained.

Various inverse methods are reported in references 10 to 14. Unfortunately, these

methods have not been successful for constructing solutions for body shapes which pro-

duce a shock wave requiring many parameters for an adequate description; only circular

cross-section cones at incidence have been amenable, whereas solutions for elliptic cones

have been obtained only painstakingly. It is apparently unfeasible to use the aforemen-

tioned inverse methods for elliptic cones at incidence. Other conical methods that have

been used incorporate the method of relaxation in regions where the cross flow (velocity

component normal to a conical ray) is subsonic and the governing differential equations

are of the elliptic type; a two-dimensional method of characteristics is used in super-

sonic cross-flow regions where the equations are hyperbolic. Such approaches are

developed in references 15 to 17 in which flat delta wings with attached leading-edge

shocks are considered. It is not known if these methods can be easily coded for effi-

cient machine calculation for nonflat conical wings, but it seems doubtful. Moreover,

theresults in reference 17 appear to be erroneous, as shown later in this paper.

The present paper concentrates attention on a method that is "direct" in the sense

that the body shape is given and is one of the bounding coordinate surfaces; yet the shock

wave is another bounding coordinate surface, and the governing differential equations are

solved by integrating inward from the shock. Thus, in that respect, this method is like the

inverse methods. The method has two distinguishing features: (a) the coordinate trans-

formation which maps the region between the shock and body onto a rectangle and (b) the

solution of the transformed problem by the method of "lines" or "straight lines," so-called

by various authors. Neither feature is new, yet together they prove to be an efficient

means of solving free-boundary problems such as the supersonic blunt-body problem or

conical flows. The convenient device of transforming the shock and body surfaces into

bounding coordinate surfaces is widely used in computational aerodynamics, for example,

references 2 to 7 and 18 to 21. The basic idea of the method of lines is to discretize all

but one of the independent variables in the partial differential equations so that a system of

approximate, simultaneous, ordinary, differential-difference equations is obtained. The
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approximate system can be solved numerically by an efficient routine such as a fourth-

order Runge-Kutta method, and very good accuracy can be obtained with large steps in

the direction of the continuous variable. The same purpose is achieved by the better-

known (in the United States) method of integral relations (ref. 22). The difference

between the two methods is that the method of integral relations, in its usual formula-

tion (refs. 19, 23, and 24), requires new algebraic development for each higher approxi-

mation (i.e., more lines) and the equations grow more complex; whereas the method of

lines system is written recursively with arbitrary number and spacing of lines.

The present method, including the transformation of the shock and body surfaces,

is hereafter called the method of lines. In reference 25, the work of Telenin and his

coworkers is cited, in which they used the method of lines for numerical solutions to the

axisymmetric, supersonic blunt-body problem. That work was extended to the three-

dimensional blunt-body problem and reported in reference 26. 2 More details of the pre-

ceding work are given in reference 27.

Makhin and Syagayev (ref. 28) recognized the difficulties associated with Syagayev's

earlier inverse method (ref. 14) and applied the transformation discussed previously in

which the body and shock become bounding coordinate surfaces. Their procedure was

essentially the method of lines, although they used a first-order Euler method to integrate

toward the body; to maintain accuracy, a small step size was used in the inward-marching

direction (i/64th of the local shock-layer thickness). The modification allowed them to

solve the direct elliptic-cone problem, which was intractable by the earlier inverse

approach.

Bazzhin and Chelisheva (ref. 29) applied the method to conical bodies at large

angles of attack where supersonic cross flow always occurs. Their procedure was

quite similar to approaches to the blunt-body problem; they used the method of lines

on the windward, high-pressure side of the conical body up to and beyond the region

where the cross flow becomes supersonic. A conical, two-dimensional method of char-

acteristics was used to continue the solutions in the supersonic cross-flow region. More

results, with emphasis on the characteristics solutions, are given in reference 30. An

interesting result in reference 30 was that in some instances it was possible to continue

the characteristics solution through the leeward plane of symmetry of elliptic cones at

large incidence; thus, symmetry conditions were violated and this indicated the impossi-

bility of flow without embedded shocks in the general case. Neither reference 29 nor 30

suggests using the method of lines for the small-to-moderate incidences in which the

cross flow is everywhere subsonic, nor was any mention given to the application in

reference 28.

2The word "Attached" in the title of reference 26 is an obvious error in translation
and should read "Detached."
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During the progress of the present work, Jones (ref.31) reported a method similar

in many ways to the present procedure. He was apparently unaware of the work in the

Soviet Union cited herein and did not refer to his method as a method of lines,although it

is the same. Jones obtained solutionsfor circular and ellipticcones and a conical body

with a four-parameter, smooth, cross-section contour having both concave and convex

portions. The method was shown to be accurate and efficient,and he was able to experi-

ment numerically with some of the more theoreticalquestions concerning conical flows

such as the "lift-off"of the vortical singularity(refs.32 and 33). He stated that the

method was restricted to conical flows with subsonic cross flow, which is not found to be

true in the present work.

The present paper outlines a method of linesfor automatic computation of conical

flows, including not only ellipticcross-section cones but also the compression side of

conical delta wings with shock attached along the leading edge. In the latterproblem,

large regions of supersonic cross flow occur, yet the method is applicable there without

modification.

a

b

Cp

i,j

Moo

semimajor axis of ellipse

SYMBOLS

semiminor axis of ellipse

pressure coefficient

indices indicating line number

free-stream Mach number

N number of lines

p pressure

U,V,W

v_

V c
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distance along ray

component of velocity in r-, r/-,and i-direction,respectively

free-stream velocity

component of velocity in plane _b= Constant
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W e

D

X

component of velocity normal to plane

nondimensional spanwise coordinate

= Constant

Z cylindrical coordinate in downstream direction

O/ angle of attack

shock angle

Y ratio of specific heats

E

7/

convergence criterion on normal velocity at conical surface

angle measured in plane normal to body from ray on surface to ray in field

7] S

8o

A

value of _? at shock

conical apex angle of body in vertical plane of symmetry

sweep angle

_gT arc length along intersection of unit sphere with conical body

P density

polar angle in cylindrical coordinates (see fig. 2)

METHOD

Conical Coordinates

The equations governing supersonic, inviscid flow of an ideal gas are written in a

body-oriented, orthogonal, conical coordinate system (r,77,_) as suggested in reference 34

where r is the distance along a conical ray, 77 is the angle measured from the body

surface to the ray in a plane _ = Constant, and _ is a measure of the arc length along

the intersection of the body surface with a sphere of radius r centered at the body apex.

It should be noted that the body is the conical surface 7/= 0, and the contour along which
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is measured is a plane curve only in the special cases of a circular cone or a flat delta

wing. This coordinate system has the advantage that the associated velocity components

are the natural conical components (u,v,w); the v-component is zero at the surface 7/= 0

and the magnitude of the velocity component normal to a conical ray (hereafter called the

"cross-flow" component) _v2 + w2 governs the type (elliptic or hyperbolic) of the par-

tial differential equations for the conical flow. Furthermore, certain singularities appear

where the cross-flow component vanishes "--(v_ + w2 = 0), and it is extremely important

that such points be recognized and interpreted correctly. In reference 35, for example,

a cylindrical coordinate system was used, and the authors apparently assumed that a

nodal singularity occurred where the two cylindrical components Vc,W c vanished; they

actually manufactured a singular node at that point and obtained an erroneous discontinu-

ous solution for an elliptic cone at zero incidence. This is not to say that the use of

cylindrical or other nonconical coordinates is wrong but rather that more care must be

taken with them. Jones (ref. 31) used cylindrical coordinates with the method of lines,

and he computed the same case as in reference 35 and obtained a valid continuous solution.

Transformation to a Rectangular Region

With the conical similarity (_r = 0) the partial differential equations involve two

independent variables, 77 and _, and the problem is solved on a spherical surface

r = 1. To facilitate the formation of the boundary values at the shock wave, whose posi-

tion must be determined as part of the solution, it is convenient to introduce the following

change of variables:

7/ and T = _ (1)= _s

where _? = _?s(_) is the equation of the shock-wave contour on the spherical surface

r = 1. The chain rule gives

t a (2a)

__O= _ d_?s _ + (25)

so that the partial differential equations take the form

Owd77s 
= (3)

Similar forms hold for the three velocity components u, v, and w. The density is elim-

inated from the system as a differential variable by using the Bernoulli equation and its

derivatives. It should be noted that the function 77s defining the unknown shock contour
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andits derivative dT/s/dT appear explicitly in the transformed equations. Likewise,

because a body-oriented system is used, terms involving the body surface curvature

also appear in the right-hand side of the equations, although they are not indicated in

equation (3).

The problem is thus transformed to a rectangular region, where the cross-sectional

contours of the shock wave and body surface are mapped onto the lines [ = 1 and [ = 0,

respectively.

The Method of Lines

The region of interest in the [,T plane is now divided by N lines parallel to the

I-axis (N + 1 lines for delta wings with attached leading-edge shocks); it is not neces-

sary that the strips be of equal width. For the elliptic cone, figure 1 illustrates the

division in the physical _,_ plane and the transformed _,T plane for N = 9. At each

strip boundary or line, the system of equations is reduced to ordinary differential-

difference equations by replacing the derivatives 0/0T by finite differences or, say, by

derivatives of polynomials in T. One of the aims in the present work was generality

with simplicity; hence, it was decided to use the derivative of a Lagrange interpolation

polynomial to approximate 0/_ T. This use allowed experimentation with unequal line

spacing, noncentral differencing, and arbitrary (within reason) number of lines to be

included in the interpolation-difference formula. The current program uses an equal

number of lines on either side of the line at which O/OT is computed; therefore, cen-

tral differencing is obtained when the line spacing is equal. The difference, or poly-

nomial, approximations for 0/aT cause the differential equations along any line to be

coupled to those along the other lines. There results a system of 4N simultaneous ordi-

nary differential equations which are integrated by a fourth-order Runge-Kutta method.

Boundary Conditions

Shock-wave conditions.- The shock wave shape is unknown and must be determined

in the solution. The flow variables are to satisfy the usual three-dimensional shock jump

conditions at _ = 1.

Flow tangency at surface.- The condition of flow tangency at the surface must be

satisfied, that is at _ = 0, the normal velocity component must be zero:

V(0,T) = 0 (4)

Symmetry conditions.- So far, only problems with at least one plane of symmetry

have been solved. Symmetry is accounted for in the formula for the _- derivatives by

properly reflecting points (lines) about the symmetry plane. For the elliptic cone both
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the windward (i = 1) and leeward (i = N) lines correspond to symmetry planes. For the

compression side of delta wings, the line i = 1 is a symmetry plane.

Leading-edge shock conditions.- For the delta wings, the line i = N + 1 corre-

sponds to the sharp leading edge, and the condition of shock attachment is enforced there.

At that line the slope of the shock wave and the values of the flow variables can be deter-

mined directly from the shock conditions; hence, no differential equations need to be inte-

grated along i = N + 1. In forming T derivatives at lines near the leading edge, the

number of points used in the derivative formulas is automatically reduced, if necessary,

to retain an equal number of lines on either side of the line at which a/aT is computed.

For example, if a five-point formula is being used generally, with the derivative evaluated

at the middle point, then the number of points in the formula is reduced to three at line

i = N to maintain an equal number of points on either side of this line.

Determination of the Shock Shape

The form of the shock-wave cross section is given by the unknown function

_/= _S(T). If _S and d_s/dT were known, then all the information concerning the

shock-wave geometry would be known, and the values of the functions p, p, u, v,

and w at the shock wave (_ = 1) could be evaluated from the shock jump conditions.

These values could be used to start the numerical integration at _ = 1 and proceed

down to the body surface at _ = 0. Only the correct shock function _s will cause the

flow-tangency condition (eq. (4)) to be satisfied; thus, there must be a relation between

the function _/S(T) and the normal component at the surface v(0,T). This is the basis,

then, for determining the correct shock shape.

Newton iteration for shock shape.- The number of unknown values is equal to the

number of normal components vi(0) = V(0,Ti). A Newton-type iteration procedure has

been devised for adjusting r/s, i to achieve m.ax[vi(0) [ - e, where e is a prescribed
1

accuracy criterion. The steps in the procedure are straightforward and easily automated

and are given as follows:

(1) Assume an initial set of values 77s, i (i=l,...,N) based on experience, approxi-

mate solutions, or previously computed cases with conditions close to those desired.

(2) Numerically differentiate the 7?s,i values with the formulas coded for obtaining

T derivatives.

(3) With _?s,i and dT/s,i/dT from steps (1) and (2), solve the shock jump condi-

tions for Pi, Pi, ui' vi, and w i (i=l ,... ,N).

(4) Use the results of step (3) for initial values to start a numerical integration of

the system of 4N equations from _ = 1 to _ = 0, and evaluate the normal components

at the surface vi(0).
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(5) Test m.axlvi(0) I .
1

lem is considered solved.

If m.axlvi(0) I _-<e, then the shock shape is good and the prob-
1

Otherwise continue to the following perturbation cycle.

(6) Perturb each parameter _s,j independently and in order. That is, change

Us,j to _?s,j(1 + 6), where 6 is a small number (say, 10-6), and repeat steps (2) to (4).

This results in small changes in each vi(0) due to the perturbation in _s,j" Hence the

jth column of an N by N matrix of influence coefficients or partial derivatives is gener-

ated with each perturbation.

(7) Solve the usual first-order linear system

to obtain the increments ,XT?s,j

vi(O) - o.

_ __s,j = -vi(0) (i=l,...,N)

j=l _ 's,j]

required to correct the shock shape and drive all

(5)

(8) Use the new shock parameters _s,j + 'X_?s,j to start a new cycle at step (2).

Note that a complete cycle requires N + 1 integration runs: one "pivotal" run and

N perturbation runs.

The shock-wave determination procedure of reference 31 differs somewhat from

the present one in that the shock function is given by a trigonometric polynomia ! and the

coefficients are chosen to minimize the sum of squares of the normal components at the

surface. The computational scheme used herein appears to require more computation,

but in the authors' experience it was the only one that was generally satisfactory.

Approximate starting shock shapes.- Usually a very good estimate of the shock

shape is required for a successful calculation and convergence. The exceptions are

circular cones at moderate relative incidences (_= =< 0.5) and delta wings at large super-
/

sonic Mach numbers (Moo _>3.0). For most other cases, however, considerable care

must be exercised in choosing the initial shock shape to start the iterations previously

described. A poor initial estimate can result in any of several program failures, such

as negative pressures or vanishing denominators caused by excessive supersonic cross

flow, which introduce characteristic-type singularities in the differential equations (i.e.,

when a _ = Constant line is tangent to a conical characteristic). Moreover, as the num-

ber of lines is increased, the approximation to the elliptic-type partial differential equa-

tions improves, and the solutions tend to become sensitive to a small degree of "rough-

ness" in the shock shape. A maximum number of lines (or a minimum AT) is reached

beyond which the numerical integration from the shock results in a singularity between

the shock and body, even though the shock shape is a "good" one for a calculation with

fewer lines. In the cases studied with this method so far, the maximum number of lines
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has been about 19 or 20, but such a large number is seldom necessary except in severe

cases of very flat elliptic cones (axis ratio ab<_-0.25).

In order to obtain a good initial estimate of the shock shape for such cases as

elliptic cones at incidence, a "simpler" case was computed first and then the input

parameters were changed gradually toward the desired configuration, a new converged

shock shape being obtained with each change of input parameters (e.g., V, Moo, 0o, 5,

and b/a). The history of the set of _s,i as a function of the set of input parameters

was incorporated in an extrapolation procedure to predict the new shock shape for the

new set of input parameters. Such a procedure was used in reference 31 and was also

successful in the present work. The procedure is completely automated in the present

program for circular and elliptic cones, and the variation of any of five different input

parameters is allowed.

The initial approximation for the delta-wing shock shape could be estimated

directly for any angle of attack _ (up to that causing detachment from the leading

edge), sweep angle A, and Moo. The estimate used was an even function in T which

requires only an estimate of 7/s, 1 (the value of 77s in the plane of symmetry). The

function is contrived to give _s,N+l = 0 (the condition of attachment at the leading edge)

and the correct value for (d_/s/dT)N+l which is calculated from the shock conditions.
The function is

rlS, i
(6)

The value of _?s,1 used m equation (6) is a tangent-cone approximation, increased by a
factor 1.2 to avoid the Mach wave condition for very thin wings at small 5, as follows:

fls,1 = 1.2(fl- 0o - 5) (7a)

where (ref. 36)

sin2 _ 71+I sin2(O° +c_)+_ (7b)
--_ Moo 2

In a few instances, the value of _/s,1 was so far off that the required corrections

A_?s,i were sizable, resulting in too much "roughness" in the shock shape; subsequent
iterations would fall for reasons already described. However, it happens that in this

event the first correction for r/s, 1 is quite good so that restarting the iteration with

this value in equation (6) has always been successful.
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Extrapolation to Surface

At the surface, ( = 0, the derivatives du/d_ and dw/d( are infinite because of

the well-known vortical layer adjacent to the surface in conical flows (ref. 32). The

derivatives dp/d_ and dv/d( are finite, however, and this fact allows extrapolation

of the functions p and v to the surface from (> 0. In fact, it is only v i that is

extrapolated during the iteration runs in order to evaluate the magnitudes of vi(0)

(i=l ,... ,N). When the convergence criterion is met, then the pressure p is also extrap-

olated to _ = 0. The surface entropy is a constant on the surface, and if the value is

known, then the isentropic surface density can be calculated as a function of the extrap-

olated pressure and the surface entropy. The Bernoulli equation relates p, p, u, v,

and w; since v = 0 at the surface and p and p are known, this gives one equation

with two unknowns, u and w. The other equation needed for determining u and w

is the differential equation

w(O,r) au= r) (8)

that is valid at the surface.

a single nonlinear differential equation as follows:

,)1 ui2 + = Constant (i =1 ,... ,N)

The usual formula is used for evaluating T derivatives, and equation (9) is solved by

Newton iteration. When convergence is achieved, equation (8) gives wi; hence, the

isentropic surface values are completely determined.

cedure as that of reference 31.

Substitution of equation (8) into the Bernoulli equation gives

(9)

This is essentially the same pro-

Computation of Surface Entropy

For the circular cone, the surface entropy is the value that occurs in the windward

symmetry plane, line i = 1. For the elliptic cone with the free-stream velocity vector

lying in the plane of the minor axis, the surface entropy is assumed to be the maximum

value at the shock wave. When the free-stream vector is in the plane of the major axis,

the surface entropy is piecewise constant; that is, it has the value of the windward sym-

metry plane on the surface segment where W(0,T) < 0 and the value of the leeward sym-

metry plane on the rest of the surface. The surface entropy for the delta wings with con-

vex surfaces is the same as the leading-edge value. Other possible configurations are

not covered in this paper.
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RESULTS

Elliptic Cone

The present method was applied to the calculation of supersonic flow past an elliptic

cone with 7 = 1.4, Moo = 5.8, b = 0.5, and Oo = 6.0 ° . The calculated shock shape and

pressure distribution are shown in figure 2(a). The calculation was performed with

N = 17 lines with unequal spacing; the density of lines in the region of large surface cur-

vature was about double that elsewhere as shown by the dashed lines in the section view.

The same problem was calculated with N = 17 and equal spacing and theresults were of

comparable accuracy; it is not yet clear if unequal spacing offers any advantage.

The calculated shock shape is shown for a = 6 °, where the leeward side of the

cone is alined with the free-stream vector. This angle of attack is difficult because at

Moo = 5.8 the free-stream pressure is small, and pressures lower than the free-stream

value are predicted on the leeward side as can be seen in the Cp plot. The abscissa of

the Cp plot is the angle q_ as shown in the section view. (The windward symmetry

plane corresponds to @ = -900.) The present results for the pressures are compared

with the experiments of Chapkis (ref. 37), and the agreement is excellent except on the

leeward side (_ > 0) where a viscous buildup occurs to raise the level of the measured

pressures. Typical of the inviscid calculations for both circular and elliptic cones, a

pressure minimum occurs away from the leeward plane of symmetry when the relative

incidence a/0 o approaches unity.

Computation history.- The elliptic cone at a = 0 ° was solved by starting from a

circular cone (_ = 1) with semiangle,_ equal, to the desired semiangle (11.8 °) in the plane

of the major axis of the ellipse [u = 0.5). The axis ratio b/a was changed in increments

of -0.1 until the desired configuration was obtained. The solutions for various angles of

attack were then computed beginning with zero angle of attack. Table 1 gives the history

of the automatic increase in a with the number of cycles (one cycle consists of N + 1

integration runs of the coupled 4N differential equations) required to converge the shock

shape and print for each c_ The convergence criterion for the normal velocity compo-

nents was set at e = 10 -3, and the final value of m.ax[vi(0) [ is also shown. Each inte-
1

gration from the shock to the body was made with 14 integration steps of variable size.

The total central processing time required for these 16 cycles was about 14.5 minutes on

a Control Data 6600 computer system. Thus each cycle required an average of about

56 seconds of central processing time.

Supersonic cross flow.- For a = 6°, a small region of supersonic cross flow occurs

next to the surface (0 _-<_ _ 0.12) on the leeward side where the pressure drop is stron-

gest (10 ° < _b < 250). Whenever supersonic cross flow occurs around circular or elliptic

cones, convergence of the normal components vi(0) is more difficult at the lines in that
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region. If the supersonic cross-flow region is not extensive, convergence is possible,

as demonstrated by the present example.

Conical Delta Wings

Perhaps more appropriate to this compilation of papers are the wing-like bodies.

The present method has been applied to the problem of conical delta wings with the shock

wave attached at the sharp leading edges. In this problem the lower (compression) sur-

face is independent of the upper (expansion) surface, and the two can be treated separately.

The method of lines, as formulated herein, is only applicable to the compression side

where the shock wave forms the outer boundary. Nevertheless, the compression-side

results are valuable from both theoretical and practical standpoints. As mentioned

earlier, the results from the present method provide a check for more complex three-

dimensional calculation methods, and it will be seen that they corroborate results from

other conical methods and experiment, too. Practically speaking, at large supersonic

Mach numbers nearly all the aerodynamic-force contribution comes from the compres-

sion side.

In these problems the cross-flow component (v2 + w2 is supersonic at the leading

edge and remains supersonic for some distance toward the wing center line. As stated

before, the partial differential equations governing the conical flow are of the hyperbolic

type in regions where the cross flow is supersonic, and a two-dimensional conical method

of characteristics can be used to construct the exact flow in such regions. Maslen

(ref. 15) was the first to describe this approach for conical delta wings, and it has been

exploited extensively in reference 30 for the flow about elliptic cones at large angles of

attack. A computer program using the conical method of characteristics has been devel-

oped at the Langley Research Center by C. W. Chiang3 and Richard D. Wagner, Jr.; they

supplied the results presented in this paper although the method has not yet been

published.

¥incenti (ref. 38) proposed an approximate method which can also be used in regions

of supersonic cross flow; it is analagous to the familiar shock-expansion method for two-

dimensional and axisymmetric flows. The approximation reduces to a nonlinear ordinary

differential equation that is numerically integrated along the surface in the spanwise direc-

tion from the leading edge inward to the cross-flow sonic point. Results obtained by

Richard D. Wagner, Jr., by that method are presented and are referred to as a "conical

shock expansion" method.

The supersonic cross flow in the delta-wing problems presents no difficulties for

the method of lines; this is contrary to the case of the circular or elliptic cone at

3NRC-NASA Resident Research Associate on leave from the University of Denver.

143

lllllllililillllltlilililiillillltl 



incidence where convergence becomes more difficult when a region of supersonic cross

flow occurs, as already mentioned.

Parabolic-arc cross section.- Reference 7 presents calculated results for a number

of conical delta wings, with a three-dimensional implicit finite-difference scheme being

used which is sometimes referred to as the "BVLR" 4 method or the "half-step" method.

Delta wings with both flat and parabolic-arc cross sections were presented in the refer-

ence, and the results from reference 7 are compared herein with results from the pres-

ent method and other methods. Planform and section views of a thin parabolic cross-

section wing are shown in figure 2(b) with the calculated shock shape for _ = 10 °. The

conditions for this problem are Moo = 4, A = 50 °, and 8o = 3°. The cross-flow sonic

line is shown as a heavy dashed line in the section view, and the layout of the computa-

tional lines for N = 9 is depicted by the finer dashed lines which appear normal to the

surface.

In the three wing problems of thispaper, equal line spacing was used. Recall that

this means equal AT increments where T traces around the wing contour in the sur-

face r = I; thus, when projected onto the plane z = I in which the body cross section

is prescribed, the lines appear to spread as the leading edge is approached. The solid

curve for the shock represents the present results,whereas the squares represent

Voskresenskii's results. The squares are not meant to coincide with the dashed lines;

they were replotted from the continuous curves shown in reference 7 by using constant

intervals in the spanwise (x-)direction. The replottingof those curves for the shock

shape is probably not as accurate as the pressures because although Voskresenskii's

shock appears to lie slightlyinside the present result near the center line,shock pres-

sures by both methods (notshown here) agree very well. The conical method of charac-

teristicsalso gives a shock shape from the leading edge to the sonic line,and the results

(not shown) coincide with the solid curve drawn through the present results.

On the right side of figure 2(b)the surface pressure coefficientis plotted against E,

a nondimensional spanwise coordinate; E = 0 at the wing center line and E = 1 at the

leading edge. The vertical dashed lines indicate the spanwise location of the cross-flow

sonic point5 at the surface and, hence, the limit of applicabilityof both the conical method

of characteristics (MOC) and the conical shock-expansion method. The method of lines,

conical characteristics,and conical shock expansion agree very well in the supersonic

cross-flow region. Voskresenskii's results are generally quite close to the present

results with some small discrepancies. At the leading edge, where the pressure and

other variables can be calculated accurately from the algebraic shock conditions,results

4After Babenko, Voskresenskii, Lyubimov, and Rusanov, the co-authors of
reference 3.

5As the angle of attack is increased, the cross-flow sonic point moves toward the
leading edge and reaches it just before leading-edge detachment occurs.
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from all theories should agree exactly; yet Voskresenskii's result for the pressure is

noticeably low. His pressure calculation just inboard of the leading edge rises slightly

above that of the three conical methods, but then appears to agree well with the present

results in the central subsonic cross-flow region. It appears, then, that a small error in

the leading-edge boundary condition has little effect on the computation over the rest of

the wing by Voskresenskii's three-dimensional, distance-asymptotic method.

Circular-arc cross section.- Reference 39 presents experimental data for various

conical delta wings with attached leading-edge shocks; one of the models had a circular-

arc cross section, a good test problem for the different computational methods. The con-

ditions for this problem are Moo = 8.1, A = 50°, and 00 = 6.54 °. Figure 2(c) shows the

shock shape calculated by three methods: the methods of lines and conical characteris-

tics, and a three-dimensional method of characteristics (3D MOC) described in refer-

ence 40. 6 In reference 40, results are shown only for delta wings with a region of con-

stant flow at the leading edge; that is, the outboard portion of the wing cross section is

either flat or a wedge. Results were not shown for delta wings with curvature at the

leading edge, such as the parabolic-arc or circular-arc cross-section wings, because

difficulties were experienced with such wings. The source of these difficulties has not

yet been located, but some preliminary results are shown in figure 2(c). The methods of

lines and conical characteristics agree very closely for the portion of the shock wave

bounding the supersonic cross flow, but the 3D MOC of reference 40 predicts a shock

layer that is more than 20 percent too thin over most of the span.

For the problem of figure 2(c), the wing thickness and Mach number are both about

twice the values used in the problem of figure 2(b); it can be seen that the cross-flow

sonic line 7 leans closer to the wing center line. This behavior is caused mainly by the

increase in Moo and is similar to that of the sonic line in the blunt-body problem

(ref. 9).

The spanwise pressure distribution is also shown in figure 2(c), where the various

theoretical results are compared with the data of reference 39. The hatched bands are

used to represent the measurements for several different Reynolds numbers and stations

downstream from the wing apex. The measured pressures are higher than the inviscid

predictions over the entire surface; this is the expected hypersonic boundary-layer dis-

placement effect, while boundary-layer--shock-wave interaction is most severe near the

leading edge (_ = 1). A comparison (not shown) was made between results from the pres-

ent method and the experimental data for Moo = 5.08, and the agreement was better

because the viscous displacement and interaction effects were not as severe.

6Work supported by the NASA Langley Research Center under Contract NAS1-7850.

7Calculations were done with N -- 9 and N = 18, and the results coincided. The
N = 18 results were used to plot the cross-flow sonic line.
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Two different results by the 3DMOCare shown. The long-dash--short-dash curve

in figure 2(c) shows an earlier unpublished result that is clearly in error over the entire

span. The authors of reference 40 modified the method and produced the more recent

(but still preliminary) results represented by the triangles. These recent results are

close to the other theories in the supersonic cross-flow region (although the corre-

sponding shock shape is not in agreement, as already mentioned), but they depart from

the method of lines results in the central region. When attempts were made to calculate

farther downstream in hopes of improving the results, the calculation became unstable

and diverged. Because of the failure of the method for this conical problem, the validity

of any other results obtained by this method should be questioned. The point to be made

is the necessity for rigorous checks on three-dimensional computational schemes;

conical-flow problems provide excellent check cases because they are three dimensional

but can be solved by two-dimensional methods.

Flat delta wing.- The classical problem of the flat delta wing is shown in figure 2(d).

This problem has the interesting feature that flow properties are constant between the

cross-flow sonic line and the leading edge; the sonic line is thus a singular line connecting

a constant-property region to one of varying properties. The exact, inviscid pressure

distribution should exhibit a "corner" or discontinuous slope at the cross-flow sonic point,

and the shock wave should be planar from the leading edge to the sonic line. This weak

singularity is not treated in any special way in the present method and the same is

assumed true of reference 7.

Both methods produce nearly identical results as seen in figure 2(d). The open

circles are used to show the actual location of the computational lines in the present

method for N = 12; the results are surprisingly smooth around the sonic line. Although

the assumed starting shock shape (eq. (6)) is analytic, the final converged shock points

lie very close to a straight line between the leading edge and the cross-flow sonic line,

as they should.

In the methods of references 17 and 40, the flow properties are set constant in the

supersonic cross flow, and in reference 17, an effort was made to account for the weak

singularities. Even so, the results of reference 17 (solid circles) appear to be in con-

siderable disagreement with the other methods, particularly at the larger values of _;

it seems reasonable to assume that the other methods are quite accurate. It is also note-

worthy that although Babaev (ref. 17) attempted to account for the singularities, his

results for the surface pressure distribution appear to be very smooth at the sonic point,

without a corner. Results by the method of reference 40 (3D MOC) are shown on the

Cp plot for _ = 15 °, and they are in fair agreement with the present results and those

of reference 7.
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Convergence history.- Figure 3 illustratesthe convergence history for the flat

deltawing problem used for figure 2(d). The surface pressure distributionobtained

with each new pivotal shock shape, includingthe initialapproximation given by equa-

tion (6),is shown. The key of the figure gives the maximum normal velocity magnitude

at the end of each cycle and the approximate elapsed central-processing time for the

Control Data 6600 computer system.

Convergence with increasing N.- Figure 4is an illustrationof the accuracy that

can be achieved with smaller values of N. With only one lineplaced between the leading

edge and the wing center line (N = 2),the accuracy is surprisingly good. More lines are

used, however, to give better resolution of the spanwise distribution. The approximate

central-processing time and number of cycles required to converge each case are shown

in the key.

CONCLUDING REMARKS

The method of lines has proved to be an efficient, versatile procedure for con-

structing numerical solutions to conical-flow problems. The method has been applied

to circular and elliptic cones at incidence and to the compression side of conical delta

wings with attached leading-edge shocks. The results for surface pressures are in

good agreement with experiment except where viscous effects become important, such

as on the leeward side of the elliptic cone at relatively large incidence and near the

leading edges of delta wings.

The method can be used for circular or elliptic cones at such incidences that small

embedded regions of supersonic cross flow occur, but the convergence becomes more

difficult. In the delta-wing problems, however, significant regions of supersonic cross

flow occur, and the method is applicable with no difficulties.

Several other approaches for calculating conical flows were compared with the

method of lines and were found to be in close agreement. One approach is a three-

dimensional, implicit, finite-difference scheme that attains the conical solution asymp-

totically, whereas two others are strictly two-dimensional conical methods. These last

two are applicable only in regions of supersonic cross flow, but they provide valuable

corroboration for more general methods.

A three-dimensional method of characteristics was shown to fall for the problem

of a delta wing with curvature at the leading edge. It appears that such conical-flow

problems are excellent check cases for more general three-dimensional computational

schemes because they are three-dimensional but can be solved by two-dimensional coni-

cal methods.
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TABLE I

COMPUTATIONHISTORYFORAN ELLIPTIC CONE

[_' = 1.4; Moo=5.8; b/a =0.5; e0= 6.0o; N = 17]
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I
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2.2x 10-5

9.9x i0-5

4.7x 10-5

3.7x 10-5

2.5x 10-5

1.6x I0-4

8.1x 10-6
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DISCUSSION

HARRY A. DWYER, University of California, Davis: I was just wondering

how you located the shock position in the method of lines. How do you
determine the shock location?

SOUTH: I must have done that pretty poorly on slide 3. Let us look at

slide 3. [Information from slide 3 was incorporated in written version; there-

fore, this slide is reproduced at the end of this discussion.]

We specify the ordinates of the shock, and then we numerically differ-

entiate the ordinates. Differentiating the ordinates we get the cross slopes

of the shock wave, and this gives us all we need to satisfy the Rankine-

Hugoniot jump conditions. This gives us the pressures and velocities behind

the shock, so we can integrate the ordinary differential equations to the
surface.

Now, when we get to the surface, the normal components are not zero, and

we want to drive them to zero by selecting the right shock ordinates. In

other words, the first guess for the shock location was wrong. I explained

how we make a small perturbation on each ordinate and generate a matrix of
influence coefficients. We invert it to obtain corrections for each one of

the ordinates, and hence a new estimate for the shock location. We keep

repeating the cycles until we have driven all the normal components at each
line to zero.

WILBUR L. HANKEY, USAF Aerospace Research Laboratory: Have you looked

at the leeside of a delta wing or a cone at high angle of attack, in which

the vortical singularity was of any sufficient strength to lift off the

surface? It would seem that with the method of lines you could get into

trouble with the singularity.

SOUTH: Well, the vortical singularity... There was a comment earlier

about a piece of work by D. J. Jones, of the National Research Council in

Canada, and the method that Jones uses is almost identical with this. His

work was published while we were still wrapping up the elliptic cone part

and working on the wings, and he presented some results indicating the lift-

off of the vortical singularity.

As far as I know, this is the only method that has actually given some

results indicating the actual lift-off of the vortical singularity other than

some work done by Gonidou with the BVLR method. This method, strangely,

although it is very simple and very unsophisticated, seems to have little

trouble with the nodal singularity on the leeside, at least before this

"lift-off" occurs. I won't get into too much discussion of this. The method

of lines seems to work better and easier than any other method as far as that

feature is concerned.
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Wewill never use this method for the leeside of wings. For one thing,

we might work on the inviscid problem for years and finally succeed, but

people wouldn't believe it anyway, because I think it is mainly viscous-

dominated with vortical eddies at the leading edge. For another reason, there

is no well-defined outer boundary on the leeside for the application of this

method in its current formulation.

ROBERT FELDHUNE, U. S. Naval Ordnance Laboratory: Did you say that with

your technique you do actually see the vortical singularity lift off the

surface of the elliptical cones?

SOUTH: We have not done it, but Jones has, for circular cones, and you

can look in his report and see it. He computed a low Mach number case, which

was about a 1.8 Math number, and a 12.5 ° half-angle cone, up to a relative

incidence of 1.2 and beyond; that is, up to about 15 ° angle of attack and

beyond.

The shock wave on the leeside was still not a Mach wave, and the normal

component of velocity in the leeward plane of symmetry actually passed through

zero above the surface and then went positive and then back to zero again. So

there were two zeros in the normal component of velocity in that leeward

plane. He states that his results indicate lift-off. We played with that

briefly and we would always get into trouble. That seemed to be a limitation

with our program. With his, it apparently wasn't a limitation.

SIDNEY A. POWERS, Northrop Corporation: Since we are doing the conical

three-dimensional method of characteristics, I'll have to put in a commercial

here.

In answer to Mr. Hankey, this method has been applied and does work on

the expansion side. We run 4 ° , 8° , and 12 ° leeside solution for a 45 ° swept

wing at Mach 3.

Now, our method follows streamlines, so we in essence bypass the vortical

singularity problem that way.

We agree with Ralph Carmichael's comment this morning that one should

have a good inviscid solution to give you something to base further judgments

on. So we think that the leeside solutions are important. We have done some

solutions with and without imbedded shock on the inside. [Mr. Carmichael's

comment was made in paper no. 2 of this compilation.]
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METHOD OF "LINES"

(I) WRITE GOVERNING EQS. IN FORM:

-_gSHOCK - WAVE

ROSS SECTION

8

,°-P{o,,,u,v,.,
au=H av=v
a_ v,a_ .,a_=w

(2) N LINES _=_i NORMAL TO BODY

.(5) FINITE DIFFERENCES FOR

(4) ASSUME SHOCK SHAPE

(5) INTEGRATE FROM SHOCK TO BODY

(6) EVALUATE NORMAL COMPONENTS AT

BODY

(7) ITERATE SHOCK SHAPE TO ACHIEVE

vi=O, i=l .... ,N

Slide 3-
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APPLICATION OF THE METHOD OF CHARACTERISTICS TO

NONCIRCULAR BODIES AT ANGLE OF ATTACK

By John V. Rakich

Ames Research Center

SUMMARY

The generalized boundary conditions for bodies with noncircular cross
sections are described, and numerical stability problems arising from these

boundary conditions are discussed. Surface-pressure coefficients for a

pointed elliptic cone at angle of attack are compared with experiment and
with results of other theoretical methods. Flow-field results are presented

for a nonconical wing-like body consisting of an elliptic cone forebody and

an elliptic-wedge afterbody.

INTRODUCTION

A method of characteristics for three-dimensional flow was described in

references i and 2. Although the method was developed in a general way,

applications in those papers were limited to bodies of revolution. The main
difference for bodies with noncircular cross sections is in the application

of the boundary condition at the body surface. In the present paper the gen-

eralized boundary condition is described and tested on a wing-like body with

elliptical cross sections.

Applications of the method of characteristics to noncircular bodies have

been made previously by Moretti in reference 3. That method is one of first-
order accuracy and was developed specifically for bodies with simple sections
(flat and cylindrical surfaces in combination). The flow over a delta wing
with supersonic leading edges was recently computed by Beeman and Powers
(ref. 4) by a method of characteristics employing the distance-asymptotic
technique. (Conical solutions may be considered analogous to the steady-
state motion produced by a piston with an impulsive start.) A noncharacter-
istic method, developed in the Soviet Union, has been applied to elliptic
cones in references 5 and 6. These also use the distance-asymptotic techni-

que to get the conical solution. Numerous inverse methods have also been
employed in the past for elliptic cones (e.g., ref. 7). In two recently
reported methods (refs. 8 and 9), inverse methods have been successfully auto-
mated to find the shock shape consistent with the given body.

In the present study, flow over the nonconical wing-like body shown in

figure 1 is calculated to test the proposed method. The elliptic-cone fore-

body solution is obtained by the distance-asymptotic technique. The forebody

and afterbody solutions are obtained with the same computer program that main-

tains second-order accuracy in terms of mesh spacing.
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PRINCIPAL SYMBOLS

a

CI*,C2"

Cp

M

N

P

S e

UpV_W

V

x,r,$

_x, _r, _

£

G

speed of sound; local span

characteristic directions in _ plane

pressure coefficient

Mach number

body surface outer normal

pressure

projection of streamline on _ plane

cylindrical velocity components

velocity magnitude,/u 2 + v 2 + w 2

cylindrical coordinates

unit vectors along x, r,

angle of attack

_2 _ 1

surface upwash angle

flow angle in _ plane

crossflow angle normal to _ plane

THEORY

Differential Equations

The present description will begin directly with the compatibility

equations derived and used in references 1 and 2. These are

8 8p 88 U*[(F c°s ¢ sin 8) ( sin2 ¢ c°s 8.)]
+ cos ¢ --= sin 1 + B F 2 +

oV 2 8Ci* _Cl* r r

B _P _8 _ sin W.[( F cos ¢ sin 8) (F sin2 ¢ c°s 8)IPV2 8C2, cos # ,. 1 - " - 8 2 +8C2 r r
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_ sin _ sin @
= _ + F 3 (3)

_S* Yell*

8p 1 8p
= + F4 (4)

_S* a 2 _s*

r

where CI* and C2" are projections of the Mach cone on the plane

= constant, s* is the projection of the streamline on that plane, and ell*

is the direction cosine relating unit vectors s and s* (see ref. 2). The

F i (i = i, . .., 4) on the right-hand side of these equations contain the so-

called cross derivatives which vanish for two-dimensional or axisymmetric

flow but are always present in three-dimensional flow. The circumferential

derivatives are evaluated by means of Fourier analysis, as described in ref-

erence 2. However, for the present calculations, the Fourier coefficients

are multiplied by Lanczos' o factors to damp high-frequency oscillations

(see ref. 10).

In deriving equations (i) and (4), use was made of a cylindrical x, r,

coordinate frame (see fig. I). The angles 8 and _ are defined relative

to the planes ¢ = constant; e is the flow direction measured in the plane;

and _ is angle by which the velocity vector is turned out of the plane. In

terms of velocity components, u, v, w, along the x, r, * directions, these

angles are:

0 = tan -1 v (5)
U

-It-

¢ = tan-1 w (6)
(u 2 + v 2) 1/2

For general body shapes the surface boundary condition will involve all

three velocity components. This will introduce a coupling between flow

angles 8 and @ which does not occur for bodies with circular cross sections.

While it is possible to simplify the boundary condition by using reference

planes normal to the body surface, the basic equations would be more complex

and the _lass of body shapes restricted. Therefore the basic cylindrical

coordinate system was retained in spite of complications in the boundary con-

dition. The general boundary condition is derived next.

Surface Boundary Condition

The boundary condition at the body surface may be written generally as

V • = 0 (7)
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Let the body be given by

g(x, r, ¢) = r - f(x, ¢)

Then the surface normal may be written

(8)

V

-fx_x + Jr - (l/r) f¢_¢= (9)

/i + fr 2 + (i/r2)f¢ 2

where the subscripts indicate partial derivatives. The unit vector along the

streamline direction may be written in terms of flow angles 8 and _ as

follows:

= cos _ cos e ex + cos _ sin @ er + sin _ e¢ (i0)

Substituting equations (9) and (10) into equation (7), noting that V = V_,
one can obtain the following expression for tan O (see re£. 2),

fx + (tan ¢/r)f¢¢/l + fx 2 -[(tan ¢/r)f¢] 2
tan e = (11)

1 - [(tan _/r) f¢]2

COMPUTATIONAL PROCEDURE [

The first effect of the generalized boundary condition is to change the

procedure for computing the conditions at a typical body point (see fig. 2).

Since tan e is not equal to the body slope 3f/_x, the streamline projec-

tion s* is not tangent to the body. Consequently, the integration of equa-

tion (3) requires interpolation for data at point D on the initial data line.

This is the main change in program logic for noncircular bodies. For circu-

lar bodies, conditions at point A are employed without need for interpolation.

To complete the calculation for point C on the body, equation (2) fs applied

on C2" using interpolated data at point B in the standard manner described

in reference 2, equation (2) is replaced by the boundary condition equation

(ii), and equation (4) is replaced by a body entropy condition.

The body entropy condition mentioned here for the first time, requires

additional comment. It is possible to employ equation (4) directly without

explicitly introducing the entropy function. However, since the body entropy

is usually known, the computation is simpler and more accurate if a surface

K
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entropy condition is employed. This is especially true near conical singular

points where density gradients are multivalued. For general conical flows it

is always possible, in principle, to trace the stagnation streamlines from

the body to the shock in order to determine the body entropy. However,

detailed streamline tracing is a complication of questionable value in the

light of experience with analogous blunt-body flows. Numerous studies have

found that the stagnation entropy is very nearly equal to the maximum entropy

on the shock. Therefore, as a practical expedient, the body entropy has

been set equal to the maximum shock entropy in the present conical-flow
calculations.

[

F

Numerical Stability

A stability analysis of the general nonlinear equations is too difficult

to perform so one usually relies on a linear analysis. The stability condi-

tion for linear hyperbolic equations is the well-known Courant-Friedrichs-Lewy

or C.F.L. condition. It states that the difference equations must include

the domain of dependence of the differential equations. This means that the

Mach line in figure 3 must lie above point A as shown. Although the C.F.L.

condition is derived on the basis of linearized equations, and is rigorously
shown to be only a necessary condition, it has been found to be sufficient in

most practical applications. This was true for previous applications of the

present method to bodies of revolution. However, the C.F.L. condition was

not sufficient in present applications because of the coupling of the cross-

flow angle through the boundary condition, equation (Ii).

Previous practice was to use a step slightly less than the C.F.L. condi-

tion. A value of 0.8 (C.F.L.) worked well for most applications. When this

condition was applied to an elliptic-cone calculation, the computation became

unstable as illustrated in figure 3. This figure shows the variation of

with distance starting with flow conditions that depart only slightly from

the conical solutions. For conical flow _ should be constant, but with a

step size of 0.B (C.F.L.), _ oscillates with increasing amplitude as x

increases. When the step was reduced to 0.6 (C.F.L.), the amplitude was

decreased but the computation still slightly unstable. Finally, with 0.4

[C.F.L.), it is seen that the oscillations are quickly damped, and the
computation is stable.

RESULTS

Elliptic Cone

The present method-of-characteristics program has been used to obtain

conical solutions by means of the distance-asymptotic technique. Starting

with an approximate solution, the computation is carried downstream until

variations of flow properties along conical rays decrease to a specified

error. The maximum shock entropy is applied at the body as a boundary condi-

tion. The initial solution need not be accurate, but the relaxation process
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tends to be slow if the initial solution is poor. Specialized conical

methods have been developed (e.g., refs. 8 and _ that are more efficient but

more limited. These methods start with an assumed conical shock and march to

the body. The process is repeated until the surface boundary condition is

matched.

To test the present method, a 2:1 elliptic cone at M = 5.8 and 4° angle

of attack was selected. Experimental results were available from refer-

ence ii as well as theory from reference 9. The surface pressure distribu-

tion is shown in figure 4. The results of reference 9 agree better with

experiment; the present method appears slightly low with the biggest differ-

ence occurring just to the leeward side of the leading edge. It is believed

that the difference in theories is due to the coarser mesh employed in the

present calculations. In reference 9, 17 planes were used and they were more

densely spaced near the leading edge. The present calculations initially

employed 13 planes and 6 points between the body and shock. The field was

later refined to ii points and 15 planes. Computing time was about 35 min-

utes on an IBM 7094, mod I computer.

g

A Wing-Like Body

To demonstrate the generality of the present method, a nonconical body,
which has been studied for hypersonic transport missions (ref. 12), was

selected. Flow computations have been performed for the delta-wing-like body

shown in figure 5. This body is described as an elliptic-cone forebody with

an elliptic wedge afterbody. This test body presents an especially difficult

test because of the expansion corner at the junction between the cone and the

wedge. This corner region was approximated with a small radius arc, so that

the program could be applied directly without special treatment of the sur-

face discontinuity. The approximating arc was made 0.01 of the nose length.

About 35 steps were used in calculating across this arc segment.

Results of the circumferential pressure distribution at the start, mid-

point, and the end of the arc are shown in figure 6. Note that the pressure

on the leading edge _ = 90 ° is unchanged, as it should be. Pressure on the

windward and leeward sides, on the other hand, changes rapidly in this region.

The symbols on the elliptic-cone curve (x = 1.0) show results of Kaattari's

empirical method (ref. 15) and numerical results of South et al. (ref. 9).

Agreement is good except for the region just leeward of the leading

edge where the present predictions are slightly lower than those derived by
the referenced methods.

The axial variation of the surface pressure is shown in figure 7. The

pressure is constant on the elliptic cone, x < i, and remains essentially

constant for the leading edge _ = 90 °. On the other planes, the pressure

drops rapidly on the transition arc, 1 < x < 1.01, and then rises for a short

distance behind the corner. This type of pressure variation is typical of

those observed for sphere-cones. An overexpansion usually occurs near

regions where the body slope or curvature is discontinuous. Experiments with

[

g
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blunted cones indicate that the boundary layer tends to smooth the discontin-

uous pressure gradients predicted by inviscid theory.

The two-dimensional pressure for a sharp expansion corner at ¢ = 180 °

is also shown in figure 7. It is somewhat below the value obtained with the

approximating arc segment. The present method should yield the two-

dimensional value in the limit as Ax of the arc tends to zero.

The radial variation of pressure is shown in figure 8 for several x

stations in the windward plane, ¢ = 180 °. Moving from body to shock,

n = 0 to l, the pressure first overshoots and then relaxes to the elliptic-

cone value. The overshoot results from numerical interpolation with a rela-

tively coarse finite difference mesh (ll points were used between the body

and shock). The pressure should be equal to the elliptic-cone value outside
the initial Mach wave from the corner, and should be less than that value

inside the Mach wave. The approximate location of the initial Mach wave is

indicated by the small lines on the pressure curves. Previous experience

with similar flows has shown that the pressure overshoot is decreased when

the mesh is refined (see ref. 2).

Figures 9 and I0 show the axial and radial variations of flow angle 8.

Figures ii and 12 show similar curves for the crossflow angle _. On the 90 °

and 180 ° planes, the flow angle @ is constant behind the corner as specified

by the body shape. However, on intermediate planes, @ varies with distance

in accordance with equation (ii). The radial variations of the flow angles

are qualitatively similar to those for the pressure described above. These

angles approach the elliptic-cone value some distance off the body surface,

but with some overshoot, as described in the discussion of pressure
variations.

The sign reversal of the crossflow angle in figure ii raises a question

about the shape of streamlines on the wedge afterbody. To visualize better

the streamline direction, an upwash angle measured on the body surface is

introduced here. Let e be the actual surface stream angle measured with

respect to the meridional plane, ¢ = constant, and defined as po8itive for an

upwash. Then e may be expressed as follows in terms of flow angles @ and

_, and body slopes fx and f_:

(cos _/r)f¢(f x cos @ - sin @) - (i + f 2)sin
sin e = x (12)

2)[ 1 + f 2 + (i/r2)f¢2]/(i + fx X

For a circular body, or, more generally, for f_ = O, equation (12) gives
= -¢. It is also noted here, for reference, that the conical crossflow

velocity is given by

w c = V sin e (15)

165



The axial variation of c is shown in figure 13 for the elliptic-cone

elliptic-wedge body. The variation is similar to that shown for the cross-

flow angle, ¢, in figure ii. On the elliptic-cone forebody, _ is positive

on the 75 ° plane and negative on the i05 ° plane. This indicates a flow away

from the leading edge in the direction of decreasing pressure. A reversal of

sign occurs at about x = 1.01 which seems unusual. A closer examination

shows that this peculiar reversal is caused by the curvature of the reference
line from which c is measured. The reference line is the intersection of

the plane _ = constant with the body surface and is curved on the elliptic-

wedge afterbody. The sketch in figure 13 shows the reference line for

= 105 ° (to the windward side of the leading edge). All the reference lines,

except the ¢ = 90 ° line, will approach the x axis at the trailing edge
where the body closes.

CONCLUDING REMARKS

A three-dimensional method-of-characteristics program has been applied

to noncircular bodies at angle of attack. Results for an elliptic cone were
verified by experiments and by other available conical-flow solutions. Sta-

bility problems were encountered which were overcome by using a step size

less than that allowed by the Courant-Friedrichs-Lewy condition. The C.F.L.

condition gives the maximum allowable step for linear hyperbolic equations;
it is a necessary but not a sufficient condition. Present results indicate

that in nonlinear problems the maximum step can be appreciably less than the

C.F.L. step. This illustrates a need for a more restrictive stability condi-
tion for complex, nonlinear flow-field calculations.

The present method was applied to a nonconical body with elliptic cross

sections to demonstrate its generality. While the results appear reasonable

and internally consistent, additional verification with experiment is
essential.

While the present examples were all pointed bodies, the method is not so

restricted. Flows over blunt-nosed bodies have also been calculated using a

locally supersonic starting solution obtained from an inverse blunt-body

method. Other problems which can be treated in a straightforward manner by

the present method of characteristics include sharp wings with supersonic

leading edges, and simple wing-body combinations. However, additional work

is required to include the special leading-edge boundary condition for "super-

sonic" wings. For wings with subsonic leading edges, the leading-edge bound-

ary condition is more difficult. At the present time, it is not clear how

the problem of a subsonic leading edge is best solved numerically.
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DISCUSSION

RAYMOND SEDNEY, Martin Company: I don't want to quibble at all with your

excellent presentation, especially the part about the stability and the CFL

condition, but I can't help but generalize from some experience in a com-

pletely different problem, and I just wonder if the fact that the CFL condi-

tion is violated so drastically might indicate it would be worthwhile to look

into some more efficient grid scheme. Have you considered that at all?

RAKICH: Well, I'm not sure what you would mean by a more efficient grid

scheme. I think a grid which employed body normal reference planes would

probably be better from the stability criterion, because this is what we used

before for bodies of revolution, and we didn't run into this type of instabil-

ity problem. We tried to be general in using radial reference planes, and

this coupled the crossflow angle and pressure too strongly and was really the

cause of the instability. I don't know what other kind of a grid you might

use, however.

GINO MORETFI, Polytechnic Institute of Brooklyn: Apropos of CFL rule,

are you sure that the rule has been applied correctly in your work? If you

work with finite differences instead of working with characteristics, then the

elements which enter into the denominator of the expression which gives the

allowed Ax depend essentially on crossflow values. It seeras to me that you

are using other velocity components, so probably you are using here a _x

which does not satisfy the CFL rule as it was originally written for multi-

dimensional flow. I cannot make a precise conunent, but I would like to put a

question mark on the way you applied the CFL rule.

RAKICH: As I understand the rule, it just states that the domain of

dependence of the difference equations must include that of the differential

equations.

MORETTI: For the entire crossflow?

RAKICH: Yes, so it means you have to include points from reference

planes at least beyond where the Mach lines would intersect the initial data
surface.

MORETTI: I think that, on occasions, _x may still be smaller than the

one you use, and it may well depend on the grid.

So, no precise comment can be made, unless one provides a detailed

analysis of the scheme which has been used.

RAKICH: Well, let me restate, then, what I said earlier. Can I have

slide 3, please?

As I understand the CFL rule, it just says that we have to include points

from our difference mesh just beyond the intersection of the actual Mach line

with the initial data line. Of course, as you point out, this is just one

plane, and the Mach lines we show here are the projections of the Mach cones
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onto that reference plane. We imagine all the Mach cones lined UP, and these

make a Mach surface that crosses this reference plane.

Now, in the crossflow direction consider a similar projection of Mach

cones onto the surface r = constant. All we have to do to satisfy the CFL

condition is to use data from reference planes outside the intersection of

these crossflow Mach lines with the initial data surface. Since the present

Fourier method uses data from all the planes, ¢ = 0 to 7, this has been

satisfied.

MORETTI: How big is the speed in the crossflow? Is it supersonic?

RAKICH: In this case, no.

FRED R. DEJARNETTE, Virginia Polytechnic Institute: I believe you add

some sort of smoothing function to your characteristics method, that is some-

thing like a second derivative term. Was that used in this characteristics

program?

RAKICH: Yes, it was. This is not always used, but in certain cases it

is. When the entropy layer on a blunted body is very thin, and also for

conical flow, we find it helps out if we do employ that type of difference
scheme for the streamwise calculation.

DEJARNETT£: I would like to add that possibly this has an effect on the

stability criterion, because other people, using something like a Lax-Wendroff

scheme, have found that they have to use something somewhat less than the CFL

stability criterion in order to get stable solutions.

RAKICH: This is something that could be investigated, and I suppose I
should. 1

SIDNEY A. POWERS, Northrop Corp.: John, your slide 8 (fig. Ii), where you

show a crossflow angle of an axial variation, it looks a little bit strange.

This angle _ is essentially the upwash angle, due normal to the leading edge.

Is that correct? And yet you don't show any axial variation as you go down-

stream. Would you expect this crossflow angle or this upwash angle along the

leading edge to change in this wedge region somewhat drastically actually, due

to the influence of this fairly sharp corner up there?

RAKICH: No, I didn't expect a drastic change. We are talking about this

line here on a 90 ° plane, right?

I didn't have any very strong feeling on whether it should or should not

vary. It just turned out that it di6n't. I guess it is because the pressure

gradient is not changing much on the leading edge since the pressure is nearly

a maximum there. If you recall slide 5 (fig. 6), the pressure was practically

constant on that leading edge and dropped sharply to each side of the leading
edge, but it was pretty much symmetrical.

IThis question was studied after the conference and the smoothing

function used does not affect the stability problem discussed in this paper.
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TIME-DEPENDENT NUMERICAL METHOD FOR TREATING

COMPLICATED BLUNT-BODY FLOW FIELDS

By Richard W. Barnwell

Langley Research Center

INTRODUCTION

v -

N70"21361

Time-dependent methods have been used for several years to calculate numerical

solutions for the flow fields about blunt bodies traveling at supersonic speeds in inviscid,

compressible gases. The time-dependent method of characteristics has been used by

Sauerwein (ref. 1) to treat this problem. However, time-dependent finite-difference

methods provide a much more efficient means of making these calculations.

Several of the early finite-difference methods were based on the "artificial vis-

cosity" technique, which treats shock waves as continuous compressions with steep gra-

dients where the flow would otherwise be discontinuous. Artificial viscosity techniques

of first-order accuracy in the mesh spacings have been developed by Bohachevsky and

Rubin (ref. 2), Harlow (ref. 3), Gentry et al. (ref. 4), and others.

A finite-difference technique of second-order accuracy which treats embedded

shock waves as continuous compressions has been developed by Lax and Wendroff (ref. 5).

Burstein (ref. 6) and others have used this technique to solve the blunt-body problem.

Another approach to the blunt-body problem is to treat the bow shock wave as a

discontinuity. Godunov et al. (ref. 7) have developed such a method which produces solu-

tions of first-order accuracy. Masson et al. (ref. 8) have used this method to calculate

flow fields about several complicated shapes. A method of second-order accuracy which

treats the bow shock wave as a discontinuity has been developed by Moretti and Abbett

(ref. 9).

The purpose of this paper is to describe a time-dependent numerical method simi-

lar to that of reference 9 which has been used to study some fairly complicated blunt-body

flow fields. Examples of the types of complexities which have been treated are shown in

figure 1. These complexities include embedded shock waves, sharp sonic corners on the

body profile, and nonuniform free-stream properties upstream of the bow shock wave.

All the results which are presented in this paper are for axisymmetric bodies at zero

angle of attack. However, it should be noted that the techniques presented herein can be

applied to more complicated flow fields.
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m

A i,Bi,Ci,Di,Ai,Ci

SYMBOLS

functions of flow properties, i = I, 2, 3, 4

a speed of sound

H total enthalpy

M Mach number

P pressure

Pt stagnation pressure

perpendicular distance from axis of symmetry

r b

re

base radius

corner radius

r n nose radius

distance along surface from axis

SC distance along surface from axis to corner

t time

to

tl

U,V

initial time

specific time

velocity components normal to and tangent to body normal, respectively

V magnitude of velocity

velocity vector

X distance along reference line from axis
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Xmin,Xmax smallest and largest values of X associated with corner

Y nondimensional distance along body normal

Yb distance from body surface to reference line

constant appearing in equation (4)

Y ratio of specific heats

distance from body to shock along body normal

percent deviation of free-stream velocity at distance r = r b from axis

from center-line value

p density

angle between body normal and free-stream direction

Subscripts:

av average

¢_ center line

I,II first and second bicharacteristics

•o free stream

METHOD

In general, all time-dependent methods treat the blunt-body problem as an initial-

value problem. This approach is possible because the governing equations for time-

dependent flow, which are written as

1%=oW + " +5

_H - - I_P= 0
-E-+ V. VH- _ a¢

Ci)

179



are hyperbolic everywhere in the flow field. The quantities p, V, p, and H in equa-

tions (I)are the density, velocity vector, pressure, and totalenthalpy, respectively. It

should be noted thatfor steady flow, the governing equations are hyperbolic only where

the flow is supersonic. Where the flow is subsonic, the governing equations are elliptic.

In general, the region of computation in the physical plane must enclose all of the

region of subsonic flow. This requirement is necessary for the calculationsto be stable,

and itmeans thatthe sonic line must lieinside the downstream boundary of the region of

computation. The upstream boundary of the region must lie on or beyond the bow shock

wave. For axisymmetric flow fields,the region of computation can be terminated at the

axis of symmetry.

Solutionsfor steady flow are obtained with time-dependent methods in the following

manner. First,an approximate initialsolution is assumed at t = to in order to start

the calculation. Next, the time-dependent equations are integrated from t = to to

t=t o+At in order to get the solutionat t=t o+At for allthe points in the region of

computation. The time-dependent method of characteristics or one of several finite-

difference methods can be used to integrate the time-dependent equations. This integra-

tionprocess is repeated to get the solutionsat t = to + 2At, to + 3At, .... At each

time interval,the solution just obtained is treated as the initialsolution and the integra-

tion process is repeated to get the new solution. Steady results are obtained when the

solutions at successive time intervals have converged sufficiently. Thus a solution is

obtained for the steady blunt-body problem, which is a boundary-value problem with

mixed governing equations, by treating a related initial-valueproblem, the unsteady

blunt-body problem, with hyperbolic governing equations.

The region of computation and the coordinate system which are used in the present

method are shown in figure 2. Due to the symmetry of the flow field,the lower boundary

of the region of computation is located at the axis. The leftboundary is located at the bow

shock and moves with itas R adjusts to its steady position. The Y coordinate, which is

measured along normals to the body surface, has values of 1 at the shock and 0 at the sur-

face. The X coordinate is measured along a reference linewhich is located at a con-

stant distance Yb from the body surface. This choice of the line along which X is

measured provides a convenient means for rotatingthe coordinate system about sharp

corners. The quantity 8 is the distance from the body to the shock along the local body

normal. The velocity components u and v are normal to and tangent to the body

normal, respectively.

The present method is similar to that of reference 9 in thatthe bow shock wave is

treated as a discontinuity,the time-dependent method of characteristics is used at the

shock wave and body surface, and a time-dependent Lax-Wendroff finite-differencemethod

is used between the shock and body. However, in the present treatment the characteristic

compatibility relationsare integrated along bicharacteristics rather than along
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one-dimensional characteristics as in reference 9. Also, the governing equations for the

finite-difference calculations are used in conservation form in this treatment, whereas in

reference 9 they are used in expanded form.

When the governing equations are written in conservation form, the coefficients of

the partial derivatives are not functions of the dependent variables. The equations of the

present method are written as

0Ai 0Bi 1 0Ci
-_- +-:- + _- + Di = 0 (i = 1, 2, 3, 4) (2)

where 5 is a function of the independent variables X and t and the quantities Ai,

Bi, Ci, and D i are functions of the independent variables X, Y, and t and the

dependent variables p, p, u, and v.

The present treatment employs an explicit two-step finite-difference method. The

first step leads to a preliminary solution of first-order accuracy, and the second step

provides a corrected solution of second-order accuracy. The equations for the prelimi-

nary and the corrected solutions are written as

~ ,t+at t /aAi t
= (A0a v + At_--_)X, Y (i= 1, 2, 3, 4) (3)Ai)X,y

and

(a.,t+At At _aAi_t (_A_t+At7 I 4/_4Ai_t 7_'/X,Y = (A'_x,Y 2 _\ _t/X,Y \--_"/X,Y.J aXl4(O4Ai/tt +4 +(aY) !+ + \ °X4/X,Y

(i= I, 2, 3, 4) (4)

Numerical values for the partialderivatives oAi/& and OAi/& inrespectively. equa-
i

tions (3) and (4)are determined from the finite-differenceequations which are analogous

to equations (2). These finite-differenceequations are obtained by replacing the partial

derivatives with respect to X and Y in equations (2)with central--finite-difference

expressions. The quantities (Ai)_v in equations (3) are the averages
/

of the values of

the quantities Ai at the points (X + AX,Y), (X - AX,Y), (X,Y + AY), and (X,Y - AY) at

time t. The fourth-order terms in equations (4) are added to insure stability. A value

of _ -- 1/32 was used to determine the present results.

There are two advantages associated with the use of the conservation form of the

governing equations. First, the use of this form permits stable calculations of flow fields

containing embedded shock waves with no further consideration being given to the presence

of these shocks. These embedded waves are represented by continuous compressions

which extend over several mesh spacings. The flow-property profiles across these
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compressions have steep gradients where the discontinuity would otherwise be. Second,

the use of the conservation form results in improved solutions at grid points near a

sharp corner where the flow is singular. Let X_nin and X_nax be the values of X

associated with the normals to the upstream and downstream surfaces at the corner,

respectively, as shown in figure 2. The second advantage is realized because the quan-

* <X=< *titles C i in equations (2) are proportional to Y for Xmi n = Xma x and can be

written as

C i= CiY (i= I, 2, 3, 4)

where the quantities C i are functions of the dependent and independent variables.

Therefore, the partial derivatives aci/aY are well-behaved near the corner, although

the individual flow properties and the quantities C i are singular there. It has been

found that the quantities Bi are well-behaved near the corner and that the only compli-

cation which arises during the computation of the partial derivatives aBi/aX occurs for

values of X where the curvature of the reference line changes discontinuously.

As stated previously, the time-dependent method of characteristics is used to deter-

mine the flow properties at grid points on the body surface. In general, three character-

istic compatibility relations are used at each body point. The procedure which is used

at a sharp corner is somewhat different. It should be noted that the present coordinate
* < < *system maps the point at the corner onto the line Y= 0 and Xmi n=X=Xma x. If the

flow upstream of the corner is supersonic, the standard procedure is used for the
,

point Y = 0 and X = Xmin, but if the flow upstream of the corner is subsonic, the solu-

tion at this point is obtained by solving two characteristic compatibility relations and the

condition M = 1 simultaneously. It has been found that the flow properties at the grid

locations Y-- 0 and X*mi n<X < *=Xma x can be related to those at the point Y- 0 and

* by the transient analog to the Prandtl-Meyer solution.X = Xmi n

Let s be the distance along the surface from the axis, and let s = s c at the sharp

corner. The two compatability relations which are used to determine the sonic solution

at the grid location Y = 0 and X = X_nin at some time t = tl are integrated along

bicharacteristics which lie in the s-t surface. This surface is shown in figure 3.

There are two alternate procedures which can be used. The first is to integrate the com-

patibility relations

and

dt I -_ + _ cos
(5)

/_I-a2/dd-_t/II =0 (6)
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along the bicharacteristic with slope

and the bicharacteristic with slope

"'d( l = u + a (7)
\dr/ I

= u (8)

respectively. The quantity a in equations (5), (6), and (7) is the speed of sound, and the

quantities r and _ in equation (5) are the perpendicular distance from the axis and

the angle between the body normal and the free-stream direction, respectively. The

second procedure consists of integrating equation (6) and the transient Bernoulli equa-

tion

"!aP=°II P at

along the bicharacteristicwith the slope defined in equation (8). Ithas been found that

results obtained with the two procedures are essentiallythe same.

RESULTS AND DISCUSSION

The present results for the flow past a flat-face cylinder for a ratio of specific

heats of 1.4 and a free-stream Mach number of 2.81 are compared with the experimental

results of Kendall (ref. 10) in figure 4. Kendall's results are shown as solid lines in the

figure and the present results are shown as circles. The shock-wave and sonic-line

shapes are shown on the left. The open circles are the present results for the shock-

wave location, and the solid circles are the results for the sonic-line location. The pres-

sure distribution is given at the right.

It should be noted that the grid used is fairly coarse. There are four grid spaces

across the shock layer and nine along the shock {five of these subtend the face and four

subtend the corner).

In figure 5, results are presented for the effect of nonuniform flow on the shock-

wave and sonic-line shapes for a 60 ° blunted cone with a ratio of nose radius to base

radius of 0.25. The ratio of specific heats is 1.4 and the free-stream Mach number at

the center line is 10. The nonuniformity of the flow consists of a parabolic dependence

of the free-stream velocity on the distance from the axis. The quantity e is the per-

cent deviation of the velocity at a distance r = r b from the axis from the center-line

value. The free-stream pressure and total enthalpy are constant. This type of nonuni-

formity may be similar to the disturbed flow in some wind tunnels with strong viscous

effects at the walls.
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It is seen in figure 5 that the nonuniformity has a marked influence on the shock-

wave and sonic-line shapes. The general trend is for the shock wave to move closer to

the body in the stagnation region and farther from the body in the transonic and super-

sonic regions as e is increased. The sonic point at the shock moves outward away from

the axis as e is increased. The present results indicate that the sonic point is posi-

tioned at the corner for e = 0 and 0.01 but that it is located upstream of the corner on

the cone surface for e = 0.03. This displacement of the sonic point will be discussed

subsequently.

The effect of this nonuniform flow on the pressure distribution for the 60 ° cone is

shown in figure 6. The pressure p is nondimensionalized with the center-line value

of p_oV 2, and it is plotted as a function of the distance from the axis along the surface.

It can be seen that for e = 0.01, the pressure in the vicinity of the corner is

reduced by about 20 percent, and for e = 0.03, the pressure near the corner is reduced

by about 50 percent. It should be noted that these severe pressure reductions are

accompanied by equally severe reductions in the free-stream Mach number. At a dis-

tance r = r b from the axis the free-stream Mach number for e = 0.01 is reduced

16 percent from 10 to 8.4. and for e = 0.03, it is reduced 34 percent to 6.6.

It can be seen that the present results are irregular in the region just upstream of

the corner. It has been found that this irregularity decreases as the grid is refined.

This irregularity may exist because an average value of the curvature of the reference

line is used at points where this quantity changes discontinuously.

The calculations for e = 0.01 are compared with the results of the method of

integral relations of South in figure 6. It should be noted that these results have not been

published previously. The basic method which South used is given in reference 11. The

close agreement of the present results and those of the method of integral relations is

encouraging in the absence of experimental data on the subject.

The Newtonian pressure distributions are also presented in figure 6. The standard

Newtonian equation was used, but the radial dependence of the quantity p_V 2 was

included. For e = 0 and e = 0.01, the flow remains subsonic all along the face, and

the present results differ from the Newtonian results as expected. As stated previously,

the present results indicate that the sonic point is located on the cone surface upstream

of the corner for e = 0.03. The present results for the pressure for e = 0.03 differ

from the Newtonian results in the region where the flow is subsonic. However, in the

region between the sonic point and the corner, the results of the two methods are in close

agreement.

In general, there is a reluctance to accept solutions which indicate that the sonic

point on the surface of a body in a symmetric inviscid flow field is located on a straight
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segment of the surface. In fact, Shifrin (ref. 12) has proved that for symmetric, non-

isentropic, inviscid plane flow such a solution cannot exist. However, it should be noted

that this proof does not apply directly to the present cases for axisymmetric flow.

It is possible that the truncation error of the present method is responsible for the

displacement of the sonic point upstream of the corner for e -- 0.03 since this error is

viscouslike in nature. However, it is also possible that the present results represent the

inviscid flow correctly and that the displacement occurs because the dynamic pressure at

points off the axis for e = 0.03 becomes too small to support subsonic flow at the sur-

face all the way to the corner.

In figure 7 results are presented for the effect of Mach number on the shock-wave

and sonic-line shapes for a 45 ° truncated cone with rounded corners. The cone is fol-

lowed by a cylindrical afterbody.

At a Mach number of 2.8, the flow in the nose region is independent of the flow on

the conical portion of the body since the sonic line at the first shoulder extends all the

way from the body to the bow shock. The flow expands around the first shoulder and

becomes supersonic. It then compresses on the conical portion of the body and becomes

subsonic. At the second shoulder, it again expands to the supersonic state.

The regions of subsonic flow are connected for a Mach number of 2.6. However, a

bubble of supersonic flow remains at the first shoulder. For a free-stream Mach num-

ber of 2.4, the subsonic zone in the vicinity of the conical portion of the body enlarges so

that it extends all the way to the bow shock wave. There are two isolated regions of

supersonic flow at this Mach number: one at the first shoulder and one at the shock wave.

For a Mach number of 2, the flow field upstream of the second shoulder is subsonic

with the exception of the supersonic bubble at the first shoulder. At this Mach number,

the entire subsonic region is affected by the presence of the conical surface.

The compression which occurs over the conical portion of the body starts as a con-

tinuous compression at the first shoulder. For higher Mach numbers, the compression

fan probably merges to become a weak embedded shock wave which intersects the bow

shock wave near the first inflection point. Experimental data (refs. 10 and 13) indicate

that these embedded shock waves do form. On the basis of the present results, it cannot

be determined whether or not this effect occurs since the present method smears

embedded shock waves so that weak shocks cannot be distinguished from continuous com-

pressions. It is clear that the continuous compression extends all the way to the bow

shock wave for Moo = 2 because the flow is subsonic throughout the compression region.

Results which show the effect of Mach number on the pressure distributions for the

truncated cone are presented in figure 8. The free-stream Mach numbers which are
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treated include the four treated in figure 7 and infinity. The pressure is nondimensional-

ized with its stagnation-point value and is plotted as a function of distance along the sur-

face from the axis.

It is seen in the figure that the results correlate quite well on the face and on the

upstream portion of the first shoulder. On the rearward part of the shoulder, a Mach

number effect appears which becomes very pronounced on the conical portion of the body.

This effect is monotonic with the higher nondimensional pressures corresponding to the

lower Mach numbers. Note that the curves representing the results for the lower Mach

numbers converge as the second shoulder is approached. The curves between the junc-

tion of the first shoulder and the cone and the first point on the cone where calculations

are made are dashed because the present results do not indicate what is happening there.

Mach number effects are observed on the downstream portion of the second shoulder and

the cylindrical afterbody, but they are small.

Some further applications of the present method are shown in figure 9. One of the

problems to be treated is concerned with the blunt body at angle of attack. The bodies

under consideration include those with sharp sonic corners since a means has been found

to compute the cross flow at these corners. In principle, blunt bodies with no symmetry

at all can be treated.

The second application involves the calculation of flow about delta wings with the

shock attached only at the tip. It is hoped that the present techniques for treating sharp

corners on blunt bodies can be extended to treat the flow at the sharp leading edges of

these wings. It should be noted that for the cases of interest, the flow over these wings

is always supersonic. Therefore, the governing equations for steady flow are hyperbolic

everywhere in the flow field, and results for steady flow can be calculated directly using

the distance from the tip rather than time as the marching variable. This procedure has

been used by Moretti (ref. 14), Babenko et ah (ref. 15), and others to calculate supersonic

flow past pointed bodies.
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DISCUSSION

FERNANDO L. FERNANDEZ, The Aerospace Corp.: I had a question, just out

of curiosity. You didn't show many results for high Mach number, free-stream

flow. Is there any difficulty that might occur with these methods as one gets

to high Mach numbers?

BARNWELL: The answer is no, there are no difficulties. In general, the

results presented are for Mach numbers of interest in airplane work.

LEONARD WALITT, Applied Theory, Inc.: This, I assume, is an explicit

method. Do you have any stability criterion you have to satisfy when you

integrate your finite difference equations?

BARNWELL: Yes, I do. The stability criterion used is the von Neumann
condition. A linearized stability analysis would tell you that the time step

is 0.707 times that determined from the CFL condition. Our time step is a

little bit smaller to be safe.

WALITT: Because of this, how close can you put your zones to define

imbedded shock surfaces?

BARNWELL: I don't understand.

WALITT: Well, in the area of imbedded shock waves you would have to

have zones pretty close together. You indicated the flow field was smeared

over a shock.

BARNWELL: Yes, the imbedded shock is smeared. At the bow shock waves,
I use the method of characteristics so there is no smearing there.

WALITT: I just have one other comment. Do you really believe that

methods like this are practical for viscous three-dimensional, time-

dependent flows? You indicated in your last slide that you did. I have to

disagree with you.

BARNWELL: I would use techniques like this to calculate the subsonic

region.

WALITT: I think you may have to develop a new kind of computer for

calculating viscous, time-dependent flow fields in three spatial dimensions.

BARNWELL: Well, I don't agree.

GINO MORETTI, Polytechnic Institute of Brooklyn: I am not answering

you, of course, but Dr. Walitt. I would like to mention a blunt-body time-

dependent program which I did about 3 years ago for Sandia Corporation, and
which has been used since then by Sandia and a large number of other indus-

tries. Nobody has complained that they need to buy a new computer. The ones

who use the CDC-6600 can perform the computation in 6 minutes.
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Now, since I have the microphone let me tell you that I like your

presentation, but I do not believe that the equations which you used take care
of imbedded shocks.

ROBERT CHARLES GUNNESS, JR., Boeing Company: I understand that some of

the Lax-Wendroff type methods experience difficulties when the sonic line is

crossed. Was this a problem?

BARNWELL: Yes, I did have trouble with stability. My problem did not

arise at the sonic line but rather at the stagnation streamline. At both

places the eigenvalues of the amplification matrix go to zero and neutral

stability can occur. I had to put in a fourth order damping term to insure

stability in the vicinity of the stagnation streamline.

GUNNESS: Will this appear in the paper?

BARNWELL: Yes.

EARLL MURMAN, Boeing Scientific Research Laboratories: Could you

explain again why you chose the time-dependent method of characteristics for

handling the boundary condition at the body, and do you think it is better

than other methods for handling the boundary condition? I haven't seen the
method before.

BARNWELL: I used it because it worked. Dr. Moretti has used this

procedure before and has published several papers in which it is used.

MURMAN: Did Moretti use it for a solid body or did he just use it for
shock waves?

BARNWELL: No, he used it at the body surface also.

One difference in his technique and mine is that he uses a one-

dimensional characteristic and I use a bicharacteristic for the line along

which the compatibility relation is integrated.

MORETTI: Yes, and no. In 4 years I changed my mind many times.

However, as a general rule, if the numerical scheme reflects the physical
nature of the problem, then it is bound to work.

195

II II J II llll II II II ]l II II li li II J II II l!





AN ANALYSIS OF COANDA JET FLOWS

By M. H. Y. Wei

Air Vehicle Corporation

and

Victor R. Corsiglia

Ames Research Center

SUMMARY

N70-21362

This work concerns the second-order theory of a static laminar Coanda jet

flow around a circular cylinder with external flow entrainment. It is assumed

that the jet is very thin in comparison with the cylinder radius; hence the

matched asymptotic theory for high Reynolds number proposed by Van Dyke is

used. Accordingly, the second-order theory is being formulated including the

effects due to curvature and entrainment. The objective of this research is

to predict the laminar separation point. Preliminary results indicate that

the curvature and entrainment effects tend to promote separation.

INTRODUCTION

It is well-known that jets, particularly two-dimensional jets, show a

strong tendency tobecome attached to nearby solid surfaces. This phenomenon

is usually associated with Coanda (fig. i) who discovered the effect in his

numerous experiments (refs. 1 and 2). An outline of the computational scheme

appears in figure 2. Some applications are noted in figure S (e.g., cyclic

circulation control of rotors, and jet flap wings). For laminar flow, the

effect is also used with fluidic amplifiers.

For a better understanding of the effect, a comparison between the free

jet and wall jet is made in figure 4. Here a free jet emerging from a

slot I of a finite width h is shown. Downstream of the slot, the f_ow at

the edge of the jet mixes with the surrounding air so that the width of the

jet increases and the jet velocity decreases. If we replace the x-axis with

a solid surface, the free jet becomes a wall jet. The velocity profile of

the wall jet consists of an inner boundary layer for Y < Ym and an outer

free jet layer for Y > Ym" Furthermore, if the pressure in the jet is

slightly lower than the ambient pressure, the free jet will not deflect due

to symmetry. However, for a wall jet, the pressure differences will cause

iThe transition length from a parabolic velocity profile for the nozzle

flow to the jet flow velocity profile is assumed to be small (of the order of

Re-2/3),
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the jet to deflect toward the wall. Particularly for a wall jet along a

curved surface, the centrifugal force tends to make the jet pressure slightly

lower than the ambient pressure and the jet will become strongly attached to
the wall.

It is realized that the complexity of the problem makes analysis of this

effect in a free stream very difficult. To gain fundamental understanding of

the problem, the wall jet around a simple curved surface without any external

flow should first be examined. The objective of this work is to develop a

theory for Coanda jet flow around a circular cylinder for predicting the vari-

ation of wall shear, the approximate separation point, and the external mass

entrainment. The authors are grateful to Prof. Libby for his stimulating

discussions concerning this objective.

SYMBOLS

See also figure 5.

dimensionless similarity function defined in Glauert's solution

fl_ normalization constant in Glauert's solution

h slot width, ft

pressure, Ib/ft 2

R

Re

cylinder radius, ft

Reynolds number, dimensionless

U, V

x, y

Y

tangential and radial velocities, ft/sec (UD, uc defined in fig. 10)

rectangular coordinates, ft (Ym defined in fig. 4)

normalized y-coordinates y = [ R/_e
' R

jet thickness, ft

Y
n defined as

03/4

O angular coordinate, rad

_, dimensionless

_) kinematic viscosity, ft2/sec

density, slugs/ft 3

EQUATIONS AND ASSUMPTIONS

As shown in figure 6, the equations to be considered are the incom-

pressible Navier-Stokes equations in cylindrical coordinates. According to
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the Prandtl boundary-layer theory, the terms in the equations can be grouped

into different orders (i.e., the first, second, and higher orders). It is

noted that the equations are invariant by translation in the O coordinate.

Assumptions made for this analysis are:

i. Thin jet - the thickness of jet is small compared with cylinder
radius.

2. Laminar flow - the Reynolds number of the flow based upon the cylinder
radius is in the order of 3x10 _ or less.

3. Incompressible flow.

METHOD OF SOLUTION

For viscous flow at high Reynolds number, Professor Van Dyke at Stanford

University has developed a matched asymptotic expansion theory (refs. 3 and

4). The problem is, then, to apply his method systematically to the Navier-

Stokes equations. Accordingly, as shown in figure 7, we define an inner

and an outer expansion for the tangential velocity. The outer equations take

account of the external entrainment flow. The equations are Laplace equations

subject to matching boundary conditions calculated from the inner equations.

The inner equations are boundary-layer equations. Thp normal coordinate y

is stretched by a factor equal to the square root of the Reynolds number.

FIRST-ORDER INNER SOLUTION

The first-order inner equations are determined to be Glauert_s wall-jet

equations (ref. S) in which the jet is assumed to flow along a flat wall with_

out any normal and tangential pressure gradient. The velocity distribution of

Glauert's solution across the jet is shown in figure 8. Because of the homo-

geneous boundary conditions, Glauert's solution contains an undetermined

normalization constant. This constant, as shown in reference 6, can be deter-

mined by the product of jet momentum and jet volume flow. After the constant

is determined, a unique relation between the jet thickness and the

@ coordinate is obtained:

(1)

The streamlines of Glauert's solution, as shown in figure 9, indicate

that the entrainment flow is perpendicular to the main jet flow. This imposes

a boundary condition for the determination of the first-order outer solution)

which must properly describe the upstream entrainment flow. The boundary

condition at y = 0 for the outer first-order stream function is
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_(1)(RY--,O)y=O = 4fl_ 01/4

= 0

for 8 > 0

for 8 < 0

(2)

which yields a sink distribution of

= 0

along the cylinder surface.

for @ > 0 (3)

for e < 0

SECOND-ORDER CORRECTIONS

There is no separation from the first-order inner solution. Second-order

inner solutions are needed to predict separation. It has been shown in ref-

erences 3 and 4 that the second-order inner correction may be split into two

parts, namely, curvature and displacement as noted in figure I0. Due to curva-

ture, a normal pressure gradient is generated by the centrifugal force of the

flow. This introduces a tangential pressure gradient in the tangential momen-

tum equation. However, this term cancels with the other second,order terms

in the tangential momentum equation. In addition, the changing of the arc

length between the y coordinates also introduces a viscous shear term

vy(32u/_y2) into the momentum equation.

To find the second-order inner correction due to entrainment, one must

solve the first-order outer equation. The outer equation is given by the

Laplace equation, and the solution must satisfy the boundary conditions, equa-

tion (2) or (3); a sink distribution is thus required along the cylinder surface.

The solution can be found by the use of Poisson's formula for a circle

(ref. 7). The outer stream function is seen to be bounded at large values of

y. From the Poisson's integral, it is found that the external entrainment
the outerflow induces a tangential velocity u_ I) at edge of the boundary

layer.

u l)r = 0.50___i+ 0.2___!5+ 0.109 - 0.0430 - 0.000703 (4)
U O 03/4

This series expansion is an approximation for Poisson's solution at y = R

for @ < 2_.

The equations to account for the curvature effect are shown in fig-

ure ii. The boundary conditions are homogeneous, but the equations are non-

homogeneous. The solution to the second-order curvature equations is shown
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in figure 12 and indicates that the curvature effect tends to decrease the
velocity near the wall and increase the velocity in the outer part of the

layer.

To obtain the curvature effect, a resultant velocity profile can be

formed by adding the second-order curvature correction to Glauert_s wall-jet
solution. It is found that the velocity profile (fig. 13) becomes flatter with

increasing @ coordinate, indicating decrease in wall shear as @ increases.

The equations to take account of the displacement effect are shown in
figure 14. The tangential velocity at the outer edge of the boundary layer is

given by equation (4). The solutions of the second-order displacement equa-
tions corresponding to the first two terms in the series expansion (eq. (4))
are shown in figure 15. The displacement effect decreases the wall shear and
tends to promote separation. A plot of the resultant velocity profile includ-
ing the first six terms in the series expansion is shown in figure 16
indicating a significant reduction in wall shear.

UNIQUENESS OF THE SECOND-ORDER THEORY

The above solutions of the problem are not unique. There may exist a
set of infinite discrete eigensolutions, each of which satisfies the homo-
geneous boundary conditions and exhibits exponential decay at infinity
(refs. 8 and 9). However, in the second-order inner equations, there is an

eigenfunction with eigenvalue equal to zero, This solution decays with the
@ coordinate at the same rate as Glauert's solution; hence, one cannot simply
dismiss it by invoking the principle of minimum singularity (ref, 10). Thus
in the formulation of the second-order theory, the need for deriving a unique
condition to include the eigensolution becomes apparent. When the constant
associated with the eigensolution is determined, there is a possibility that

the wall shear predicted by the theory will be significantly changed. Pre-

sently we are trying to find a condition for determining the constant. Lindow

and Greber (ref. ii) noted similar results in their study of the similarity

solution of the second-order wall-jet equation.

CONCLUSIONS

Based upon the work completed to date, the preliminary conclusions of

this brief progress report may be summarized as follows (fig. 17):

i. The first-order solution is similar and gives no separation (this

is the Glauert wall jet).

2. The curvature effect allows separation. However, the separation

angle seems unreasonably large if the unknown constant is taken to be equal
to zero.
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3. The displacement effect decreases wall shear significantly,

promoting separation.

4. The theory needs experimental verification. Tests in oil to observe

the laminar separation angle are planned.

REFERENCES

. Metral, A.: Sur un Phenomene de Deviation des Veines Fluides et ses

Applications. Coanda Effect, Cabinet Technique due Ministere de l'Air

(1938).

2. Metral, A.; and Zerner, F.: L'Effect Coanda, Publication Scientifiques et

Techniques du Minister de l'Air, No. 218 (1948).

3. Van Dyke, M. D.: Higher Approximations in Boundary Layer Theory. Part I.

General Analysis. J. Fluid Mech., vol. 14, 1962, pp. 161_177.

. Van Dyke, M. D.: Higher Approximation in Boundary Layer Theory. Part 2.

Application to Leading Edges. J. Fluid Mech., vol. 14, 1962, pp. 481-

495.

5. Glauert, M. B.: The Wall Jet. J. Fluid Mech., Aug. 1956, pp. 161_177.

.

.

.

.

I0.

ii.

Parks, E. K.; and Petersen, R. E.: Analysis of a Coanda Type Flow.

AIAA, vol. 6, no. I, Jan. 1968.

Morse, Philip M.; and Feshbeah, Herman: Methods of Theoretical Physics.

McGraw-Hill, 1953, pp. 370-374.

Libby, P. A.; and Fox, H.: Some Perturbation Solutions in Laminar

Boundary-Layer Theory. Part 1. The Momentum Equation. J. Fluid Mech.,

vol. 17, 1963, pp. 433-449.

Stewartson, K.: On Asymptotic Expansions in the Theory of Boundary

Layers. J. Math. and Phys., vol. 36, 19S7, pp. 173-191.

Van Dyke, M. D.: Perturbation Method in Fluid Mechanics. Academic,

New York & London (1964), pp. 131-132.

Lindow, B. G.; and Greber, I.: Similarity Solution of a Laminar,

Incompressible Jet Flowing Along a Curved Surface. AIAA, vol. 6,

no. 7, July 1968.

202
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TO PREDICT COANDA JET FLOW
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BOUNDARY LAYER THEORY
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Ist ORDER _ SOLUTION
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Figure 2
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COANDA JET THEORY

• APPLICATIONS

• CIRCULATION CONTROL, JET DEFLECTION -- TURBULENT FLOW

• FLUIDIC CONTROLS -- LAMINAR FLOW

• OBJECTIVE

• DEVELOP A THEORY TO PREDICT COANDA JET FLOW SEPARATION

• APPROACH

• FIRST PHASE--CONSIDER ONLY LAMINAR FLOW WITHOUT FREE

STREAM ON A CIRCULAR CYLINDER

• LATER PHASES--EXTEND THEORY TOINCLUDE TURBULENT FLOW,

FREE STREAM, AND OTHER GEOMETRIES

Figure 3

TWO-DIMENSIONAL FREE JET
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Figure 4
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NOTATION

WIDTH, h

u

"_X.....-EDGE OF JET

Um_yUv_rn'ilP=

u .............................................TANGENTIAL VELOCITY

v ....................................................RADIAL VELOCITY

e, y ................TANGENTIAL AND RADIAL COORDINATES

P{o...............................................AMBIENT PRESSURE

Ps ................... SURFACE PRESSURE AT THE CYLINDER

Figure 5

NAVIER- STOKES EQUATIONS

• CONTINUITY

(au+av_ _Y/ +( v+yav'_ay,
x 0

Ist ORDER 2nd ORDER

• TANGENTIAL MOMENTUM

_( V _LI + U aU a2U _ ( I a (P/P) VU
ay _Y+Y;-*'_)+,_y--;;-+R+y

IS! ORDER 2nd ORDER

_((._.Uy)2 I a2u _av) . 0
(R+y)2 ae2 + (R+y)2ae

HIGHER ORDER

• NORMAL MOMENTUM

U2 aP/P_ (vaV U aV t/aS'V)+(_T'_--_-'_-J-__ +_y _- ay2
Ist ORDER 2nd ORDER

(I _ v i _2v 2 _u
,R+y_y(_)2+ (_-T;)2_e--'z(-C_)z_-)=o

HIGHER ORDER

1/=KINEMATIC VISCOSITY p = DENSITY

Figure 6

205

\,



• ASSUMPTIONS

(A < I) - BOUNDARY LAYER ANALYSIS IS APPLICABLETHIN JET

• LAMINAR FLOW (Re = -_ 104 )< 3 X

• INCOMPRESSIBLE FLOW

• METHOD OF SOLUTIONS

• OUTER REGION (VALID FOR y LARGE)
LAPLACE EQUATION

• INNER REGION (VALID FOR y SMALL)
NAVIER - STOKES EQUATIONS

• EXPANSIONS

• OUTER EXPANSION

_. ' _,_')'Yo)÷ _ ;12)(_,o)÷---
• INNER EXPANSION

Figure7

FIRST-ORDER INNER SOLUTION
GLAUERT WALL JET

Y
Ymax

5

4

3

EQUATIONS:

au(O) av (o) ap(o)
_-T+_- o; 7y-=o

\ 1o)au I°) au I°) a2u1°)

.._ I I I I

.2 .4 .6 .8 1.0

Figure8
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FIRST-ORDER INNER STREAMLINES FOR WALL JET

I0-

6

Y_e_e INES

4- tlLw_--J_-_ S%_'2_L,NE

h-SLOTf2_

w'°'"[o It- I , i
2 3 4

O ~ RADIANS
8=8 h

Figure g

,,(i)_.(I) +.,(1)SECOND-ORDER CORRECTIONS _ -=c = D

• CURVATURE EFFECTS: (U(cI))

• CHANGING ARC LENGTH BETWEEN y COORDINATES

• NORMAL MOMENTUM EQUATION IS INCLUDED

• INDUCED TANGENTIAL PRESSURE GRADIENT TERMS

DROP OUT

• DISPLACEMENT EFFECT: (U(DI))

• UPSTREAM ENTRAINMENT:

NONZERO TANGENTIAL VELOCITY AT OUTER
EDGE OF JET

Figure 10
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SECOND-ORDER CURVATURE EQUATIONS

u (_;)

• CONTINUITY

_u(_;) 8v_ ) _v (0)+ + V (0) + Y = 0

• TANGENTIAL MOMENTUM

8U(_] t_tSU (0) v(O)aau_J+ v(I)
8u (o)

U(0)_ + U_' 88 + 8Y

8P(1) a aU(°) 8 yu(O}
88 + _ Y _ - v(O)

8Zu(_)
=

8y 2

• NORMAL MOMENTUM

8p('_=(u(O))2
8Y

Y =_ y/R

Figure 11

VELOCITY CORRECTIONS DUE TO CURVATURE

u_

2°4 --

Y
Ymox

2,0--

1,6 --

1,2 --

.8-

0 L
-.4 -.2 0

PROFILE INDEPENDENT

I I I I I

.2 .4 .6 .8 hO

ull)/ull)
C / C max

Figure 12
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I0
TO OBTAIN CURVATURE EFFECT

-q

(_/ =Y/e 3/4, fl_ =NORMALIZATION CONSTANT)

u(_, o>oh)

% Oh)

I I

.I .2 .3 .4 .5
U

Figure ].3

SECOND-ORDER DISPLACEMENT EFFECT

u(l_}

OBTAIN INFLOW VELOCITY DISTRIBUTION AT OUTER EDGE OF
JET BY SOLVING OUTER FLOW EQUATION

U(IJ) (oO, e) = 0.504/e + 0.25/83/4 + 0.109 - 0.0438 ......

SOLVE

au U) av_ )
-T6- * _- --o

± (u_lu%+vCO__÷ v__uc°_'%'
a8 aY _ = ay2

BOUNDARY CONDITIONS

u_) (o, e) = o v(_I (o, e) = o

u(_ ) (Qo, e) = 0.504/8 + 0.25/83/4 + O. 109- 0.043e ......

Figure 14
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VELOCITY CORRECTIONS DUE TO DISPLACEMENT

u(_) = (fl('r/)/O * f2 ('r/)/03/4 + f3('r/) +...'

8_- ,_,_fz('r/)

.r/6 - _" _fl(,r/)

i_
0 i i t i
-I.6 -.8 0 .8 1.6

f (-r/)

Figure 15

RESULTANT VELOCITY PROFILE (U)

I fO) (-r/, 8)} le a/2
U: 4 { f(o)(_/). _ f,---'-"_'

i __ f(°)('r'/) + 0.1 f(I)(_, 8) AT e = 1.5red

4 (7) ONLY (GLAUERT WALL JET)

2 /- I I I I I I

0 .2 .4 .6

Figure 10
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SEPARATION POINT

• FIRST-ORDER SOLUTION IS SIMILAR, i e NO SEPARATION

• CURVATURE EFFECT ALLOWS SEPARATION, HOWEVER, SEPARATION

ANGLE SEEMS UNREASONABLY LARGE

• DISPLACEMENT EFFECT DECREASES WALL SHEAR SIGNIFICANTLY,

PROMOTING SEPARATION

• EXPERIMENTAL VERIFICATION TESTS IN OIL

Figure11
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DISCUSSION

STANLEY G. RUBIN, Polytechnic Institute of Brooklyn: I just want to ask

you a question about the entrained streamline that you show on Slide 9 and
a little bit on Slide i0. It indicates that the streamline flow has negative

slope and all streamlines go away from the origin of the jet.

Now, a while ago I had a short note on a free jet expansion.

WEI: Yes.

RUBIN: In that particular case a turnaround occurs indicating a sink-

like action of the potential flow. I'm just curious as to this effect in your

case.

WEI: Yes, that's right. I tried to find the solution first for the

plane wall jet. It did turn around, very similar to Rubin's work on the free

jet. However, on a cylinder, you will find that the stream function for

entrainment flow is bonded at infinity. Now, Rubin's solution for the plane

free jet is not bonded, and it is over here that we are going to get a dif-

ference between the slopes of the entrainment streamlines.

Furthermore, on the cylinder surface you will find that the inflow veloc-

ity distribution has a reversal of slope. (Drawing on board.) The inflow

velocity is very large near the jet origin, directing from left to right.

This inflow velocity diminishes to zero tentatively assumed at here and grows

in reverse direction over the rest of surface. Of course, at the reversal

point, the tangential velocity is equal to zero and the radial velocity is

not equal to zero. It seems to me that this kind of entrainment flow is very

reasonable because you would expect that some place near the point of reversal

the jet peels off from the cylinder surface.

RUBIN: Down there, but I am really concerned with where the flow

approaches the origin.

WEI: Yes, what you are concerned with, kind of going like that.

on board)

(Drawing

RUBIN: That's only on a free jet?

WEI: This is correct. When you get into wall jet on cylinder, you will

find that the slope of the entrainment flow is different from the plane free

jet.

RUBIN: Let me jubt ask one additional question. Since your initial

solution and all your subsequent solutions are based on similarity, have you

investigated what the effect of the initial conditions would be, and the pos-

sibility of havin_ eigensolutions dependent on the initial conditions?
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WEI: Yes, there are eigensolutions. If the eigenvalues for the eigen-
solutions are not equal to zero, you can invoke Van Dyke's minimum
singularity principle that the eigensolutions belong to higher orders. How-
even, as I mentioned, there is an eigensolution with zero eigenvalue. This
solution decays at the same rate as the wall-jet solution. That is why I
said that I found a solution which ended with an undetermined constant. I
still don't know how to determine the constant associated with the

eigensolution.

RUBIN: That's the solution you were referring to?

WEI: Yes, that's right, a solution corresponding to zero eigenvalue.

For the plane free jet, there is no eigensolution with zero eigenvalue.

RUBIN: I don't know if you are familiar with this, but do you know of

Professor Libby's work on this subject?

W. J. McCROSKEY, Army Aeronautical Laboratory: I am also hung up on
some of the details of the entrainment. Is it not correct that you have

assumed that all of the entrainment in the outer flow is radially inward?

WEI: Yes.

McCROSKEY: This is .an assumption which, in the first place, I wonder
how good an assumption this is, on what basis you can make that, and secondly,

if you make this assumption it sort of looks to me like you would get into

trouble. There must be some kind of singularity or very funny behavior just

upstream of @ = 8h.

WEI: Yes, that's correct. The method assumes a radially inward inflow
on the cylinder surface. Professor Van Dyke has worked out several other

cases for the entrainment effect. One is the round jet. For the round jet,

the zero-order solution shows that the entrainment flow is perpendicular to
the jet flow. He used this as a boundary condition to calculate the outer

solution. From the inner and outer solutions he constructed a composite
stream function which is valid for all regions. The round jet has an exact

solution. The exact solution was then used to check the composite solution.
It turned out very close. So this is one indication that the method of

matched asymptotic expansion seems to be very fruitful in treating this kind

of problem. Of course, there are other illustrative examples. All I know is
that they check very well with the exact solutions.

Referring to your second question, the velocities are indeed all singular

at the jet origin. The entrainment effect introduces singular solutions of

higher order than the wall-jet solution.

McCROSKEY: You're just throwing away all the regions upstream of this,
in terms of the entrainment source.

WEI: Oh, you mean what is the upstream boundary condition on the
stream function?
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McCROSKEY: You have some entrainment from upstream.

WEI: The boundary condition is that the stream function is equal to zero

for the @-coordinate less than zero. This is for a plane wall jet, allowing
some entrainment from upstream. For the cylinder, we only have to consider

the boundary condition on the @-coordinate between zero and 27.
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A NEW METHOD FOR CALCULATING NEAR AND FAR FIELD

PRESSURE ABOUT ARBITRARY CONFIGURATIONS

By Frank A, Woodward

Aerophysics Research Corporation

Lynn W. Hunton and Anthony R. Gross
Ames Research Center

-2 1363

A new method of calculating pressure signatures and associated shock

wave patterns in the near and far field about arbitrary wing-body combinations
is described herein and illustrated with several examples.

The principal difference between this method and the currently accepted
theory of G. B. Whitham is shown to be in the aerodynamic representation used.
Both methods use a linear distribution of singularities to represent a body of
revolution, but the new method includes additional planar singularity distri-
butions on the surfaces of wing-body combinations to improve the aerodynamic

representation in the near field. In the far field, this spatial distribution
of singularities gives the same result as Whitham's equivalent body of

revolution in each azimuthal plane.

Examples of pressure signatures are presented only for bodies of

revolution pending completion of the wing-body analysis computer program.
Good correlation between theory and experiment is shown by these examples.
The new method is expected to overcome some of the present limitations of the
Whitham theory and to provide improved near field pressure signature estimates

for arbitrary wing-body configurations.

INTRODUCTION

Calculations of the pressure signature and shock wave pattern in the
field surrounding arbitrary airplane configurations at supersonic speed have
been based for a number of years almost exclusively on a theory presented by

G. B. Whitham in 1952 (ref. 1). Whitham's theory depends on the smooth
slender-body assumption in which the airplane volume and lift are represented
by separate equivalent line source singularity distributions along the body
axis. The predictions of this theory have been verified by extensive wind-
tunnel and flight-test measurements and are generally accepted as a basis for
estimating sonic boom overpressures.

Recent studies (ref. 2) have indicated a number of limitations to the

Whitham theory in areas of current interest, for example, in the analysis of
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(a) Nonslender configurations

(b) Vertical displacement of wing (high wing, dihedral)

(c) Flow field definition very near the vehicle

(d) High Mach numbers

In an attempt to alleviate these deficiences, the method described here has

been formulated for calculating pressures and velocities to first order

throughout the entire flow field about arbitrary wing-body configurations.

The method will be illustrated by several examples.

NOMENCLATURE

Cp

F

k

K

M

N

r

S

u

v

x,y,z

X o

Y

6

@

pressure coefficient

first-order correction function (Whitham)

(y + Z)M4//f S 312

total number of singularities

Mach number

first-order correction function (present method)

radial coordinate

singularity strength

dimensionless perturbation velocity in x direction

dimensionless perturbation velocity in y direction

Cartes ian coordinates

origin of first-order singularity

flow inclination angle

/M 2 - 1

ratio of specific heat for air

cone half-angle

Mach angle

cylindrical coordinate
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oo

J

k

r

free-stream condition

singularity type

singularity number

radial direction

Subscripts

ANALYSIS

The procedure presented herein is based on a recently developed

distributed singularity method described by R. L. Carmichael (ref. 3). The

configuration is represented by a large number of aerodynamic singularities

distributed along the body axis and on panels located on the wing and body

surfaces. The panel subdivision of a typical wing-body combination is illus-

trated on figure I. The six different types of singularities used in the

analysis to simulate volume, camber, incidence, and interference effects are

listed on the figure. Since the assumptions underlying this method and the

procedures used in determining the potential functions and velocity components

are described in reference 3, these details will not be repeated here. Com-

pared with the Whitham theory, the method introduces two important analytical

advantages. First, the spatial distribution of singularities gives an

improved aerodynamic representation in the near field while retaining the

correct asymptotic form in the far field. Second, the surface pressures,

forces, and moments acting on the configuration are obtained automatically in

addition to the pressure signatures in the field, thus greatly facilitating

the overall aerodynamic analysis.

The first step in the pressure signature calculations is the determina-

tion of the characteristic lines in the field. Linearized theory gives the

result that the disturbance field from each singularity is contained within

the Hach cone from the singularity origin since the disturbances are assumed

to have zero strength and to propagate into the field at the speed of sound

of the fluid at rest. The slope of the characteristic lines of an outgoing

wave in this "zero order" flow field is given by

dx

d-_-: cot _ = B_

where _= is the Mach angle of the undisturbed flow.

The theory of characteristics gives the exact slope of the outgoing
characteristic lines as

dx

d-r-= cot(_ + _) =
cot _ - tan

1 + cot u tan
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where _ is the local Mach angle, and _ is the local inclination of the

flow measured from the free-stream direction. Following Whitham, a

first-order approximation to the slope of the characteristics may be obtained

by expanding the exact equation for small values of BVr, where B = cot

and vr = tan _ (ratio of the radial to free-stream velocities). If, in addi-

tion, a linear relationship is assumed between the axial velocity ratio u

and the local Mach number M, such that

[i( .:)u]MzM + 1 +Y_

and

M_ 2 - 1

B = B_ + B-_-(1 + Y _ M 2)u

then,

dx y+ 1 M4
--= B + _ u - M 2 (vr + B u)
dr 2 8

This approximation to the slope is accurate only if Bvr is small. An

alternate form of this equation is obtained, valid for higher Mach numbers,

if the exact equation is inverted and expanded for small values of Vr/B.

Then,

dr 1 y + 1 M= 4 M_ 2

= B 2 B_3 u + --B_2 (v r + B u)

The first equation is referred to as the low Mach number expansion; the

second, as the high Mach number expansion. The Whitham theory always uses the

low Mach number expansion. This may introduce significant errors if the

theory is applied at high Mach numbers. The present theory, on the other

hand, may use either the low or the high Mach number expansion.

The equations of the first-order characteristic lines are obtained by

integrating the slope equations outward from the body surface along the zero

order characteristics using the linear theory expressions for u and v r.

The integration is performed in planes of constant @ for each of the

singularities used in the representation, as illustrated on figure 2.

The low Mach number expansion gives an axial shift _x to the zero

order characteristic line, while the high Mach number expansion gives a

corresponding radial shift _r. Because of the nature of the line integrals

being evaluated, it is found that Ax = -B At. For convenience in interpret-

ing the results, an equivalent axial shift Ax' can be defined in the high

Mach number case in terms of Ar and the local slope of the characteristic

line. In compression regions, Ax is always greater than Ax', as indicated

on the figure.
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In the Whitham theory, the axial shift is given by the simple functional

re lat ionship

ax = -k(M)_ F(Xo,O)

where the F function depends only on the equivalent area distribution in

azimuthal planes. The present theory does not permit this convenient separa-
tion of variables. Instead, the axial shift is expressed in terms of six

near field N-functions, one for each of the six types of singularities. For

examp Ie,

K.
6 3

= NjkCM ,r,Xo,O)Sk
j=l k=l

where N=, is the axial shift calculated for the kth

j, Sk i_Kthe strength of the kth singularity, and Kj
of singularities of type j used in the representation.

singularity of type
is the total number

The first term of the asymptotic expansion of the N functions for

large radial distance can be expressed exactly in the form of the Whitham F

function. Thus, either theory will give the same results in the far field

for a given distribution of singularities.

The pressure signatures in the field are now constructed by relocating
the linear theory pressures along the first-order characteristic lines rather
than the zero order Math lines. The procedure is illustrated on figure 3 for
a 15 ° half-angle cone at Math 3. The zero order pressure signature for
r = 0.5 rises rapidly from zero at the Mach line and reaches its surface
value on the cone. The first-order pressure signature is obtained by apply-
ing the appropriate axial shift _X(Xo,r ) to the zero order signature for
each point on the curve. The forward distortion of the signature indicates a

compression region containing overlapping characteristic lines. The envelope
of the characteristics defines a limit cone corresponding to the most forward

extent of the pressure signature.

The forward curvature of the signature between the Mach line and the
limit line introduces a physically unrealistic solution. Instead, a shock
wave will occur in this region which will provide a discontinuous pressure
rise from zero to a value on the upper limb of the pressure curve. The shock
wave is located by applying the principle that the shock wave bisects the
angle formed between the upstream and downstream characteristic lines at that
point. Within the approximations of the theory, this is equivalent to
locating the shock wave so that the area under the distorted pressure
signature is preserved, as indicated on the figure.
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EXAMPLES

The shock wave angle for a 15 ° cone is presented as a function of Mach

number in figure 4. The results of the present first-order near field theory

are compared with Whitham's first-order far field theory and a recently

published second-order far field theory given by Caughey (ref. 4). The

present theory is seen to agree well with the Ames Research Center Cone

Tables (ref. 5) over the entire Mach number range. It should be noted that

the present theory is limited to Mach numbers below Mach tangency, or 3.86 in

this example.

The effect of distance on the form of the pressure signature produced by

a 157 half-angle cone-cylinder at Mach 1.7 is shown on figure 5. The com-

pression waves from the cone move forward to form the front shock, as pre-

viously described. The expansion fan from the shoulder extends rapidly out

into the field, modifying the pressure signature significantly as it over-

takes the compression region. The near field signature represents an inter-

mediate stage in this process resulting in a relatively flat-topped initial

pressure distribution. The far field signature is first formed when the

first expansion wave from the shoulder reaches the shock. This results in a

typical N- wave pressure distribution which persists for all greater dis-

tances away from the body. The expansion wave is terminated by a weak rear

shock wave in this example, followed by a trailing region of negative pres-

sure. The far field pressure signature is not complete until all the charac-

teristic lines emanating behind the shoulder are absorbed into the rear shock.

At this point, the front and rear shocks become equal in strength, and the

pressure behind the rear shock returns to the free-stream value.

A comparison of the theory with experiment for a 12.75 ° half-angle cone-

cylinder at a distance of 80 cone lengths is given on figure 6 for M = 1.69.

The present method is seen to give an accurate representation of the signature,

especially in the expansion region between the shocks.

In figure 7, results are shown for a blunt-nosed body of revolution.

Although the present method of analysis is restricted to bodies with nose

angles that lie within the Mach cone, the pressure signatures of blunt bodies

can be approximated by adding a conical extension to the nose that lies just
inside the Mach cone and is tangent to the body surface. In this example the

pressure signature is calculated at a distance of l0 nose lengths at M = 2.01.

The pressures in the expansion region agree well with experiment, but the
theory overestimates the pressure jump across the front shock. Because of the

extreme pressure gradient behind the nose in this example, a small error in

shock wave location can cause a large error in the pressure jump.

220

11 II li"li It ll li ti 11 li li II li it li li 11 li l!



CONCLUDING REMARKS

A new method for calculating the pressure signatures around a wing-body

combination in the near and far field has been developed and programmed for

the digital computer. When complete the new method is expected to overcome

some of the present limitations of the Whitham theory and provide improved

near field pressure signature estimates for arbitrary configurations.

Examples of pressure signatures calculated for bodies of revolution show good

agreement between theory and experiment•
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AERODYNAMIC REPRESENTATION
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CONSTRUCTION OF PRESSURE SIGNATURE
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EFFECT OF DISTANCE ON THE SIGNATURE
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COMPARISON OF THEORY 8_ EXPERIMENT-BLUNT BODY
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DISCUSSION

A. R. GEORGE, Cornell University: I'm not sure I understand. Does your

theory use an expansion of the exact characteristics for large BVr?

WOODWARD: Well, we have this option and have found in the studies done

so far that above about a Mach number of 2 that the high Mach number expansion

seems to give an improvement in the location of the characteristic lines.

GEORGE: This would only be valid in the near field because certainly v
decreases as you move out. r

WOODWARD: This is right, but we feel that the far=field shock location

is dependent on its path through the near field. We are trying to improve the

approximation in the near field to better understand the far-field signature.

GEORGE: How, do you switch from one to the other?

WOODWARD: No, the method is valid all the way out into the far field.
In fact, it will give you the Whitham theory in the far field as the first

term of the expansion in the normal way. It is a continuous solution all the
way out.

GEORGE: One other question. For large Bvr I wouldn't expect the area
balance-shock relation to hold. Have you done any work on that? As far as

I know, it has never been worked out.

WOODWARD: That's right. We have had some difficulties with it, but at

the moment we are basing our shock location on the area balance technique.

This is one area in which we probably will be doing more work.

HARRY W. CARLSON, NASA Langley Research Center: Prank, as you know, the

Whitham approach has been quite useful for airplane configuration work because
you can take a quite complex airplane and reduce it to an equivalent body of

revolution, get the F function and then calculate the signature from this.

We have observed that it gives good results for moderate supersonic speeds,

but there is some deterioration for higher supersonic speeds, say at Mach 3

and above, and particularly in the near field.

Now, have you given any thought to using the approach you have for

finding the slope of these characteristic lines, to use these as a correction

to the Whitham method, employing the same technique for describing the F
function, but using this as a way of finding a new aging factor or a new way

of calculating the advance of one characteristic relative to another?

WOODWARD: Yes, we have. As a matter of fact in the development of our
displacement functions we have taken the far field limit of the disturbance
from each one of the singularities, and this, in a sense, is the Whitham F

function. As a matter of fact, they all show the v r behavior that is char-
acteristic of the far field solution. So with that in mind, I think that it
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will be possible to tie this together and come up with a simple program for

calculating the far field F functions, perhaps correcting them slightly, too,

as you mentioned.

CARLSON: Yes, I think that this is a good approach because I believe the

development of a system such as you have outlined here for handling complete

airplane configurations is going to be very complex, and perhaps a long time

off, but provisions for correction to the method of Whitham would be one that

we could start employing almost immediately.

ROBERT L. TRIMPI, NASA Langley Research Center: I missed it, but where

do you switch over from your high Mach number to your low Mach number

approximation?

WOODWARD: Well, it depends on the magnitude of the product of B times

the radial velocity. At the present stage of development it is really a

choice that you make at the start of your calculations whether you use one

or the other, but it can be checked by evaluating the magnitude of this

product.
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PROPAGATION OF SONIC BOOM THROUGH

A STRATIFIED ATMOSPHERE

By Wallace D. Hayes

Princeton University

and

Harry L. Runyan, Jr.

Langley Research Center

SUMMARY

A method for predicting the sonic-boom signature due to a maneuvering aircraft has

been presented. This method includes the effects of a variable, stratified atmosphere.

The method is based on geometric acoustic principles and accounts for the use of a non-

linearity to account for the weak shock field. The analytical results have been compared

with experimental data and excellent agreement has been shown, particularly with regard

to signature length.

INTRODUC TION

Sonic booms have become of prime importance in the design and operation of super-

sonic aircraft. A need has been felt for a comprehensive analysis and algorithm, real-

ized in a practicable computer program, which would provide more realistic calculations

for sonic-boom signatures in the atmosphere. This paper will present a broad outline of

such an analysis; the details of a full analysis, including the computer program_ are given

in reference 1.

Earlier algorithms for sonic boom have used various simplifying assumptions. A

basic aim of the present algorithm has been to avoid these assumptions as far as possible

and thus provide a more general treatment of the problem. Thus, the present algorithm

includes the following features:

(1) The inclusion of maneuvering aircraft in calculation of a sonic-boom pressure

(2) An appropriate ray-tube-area calculation based on linear geometric acoustics

(3) Results in the form of complete signatures, without far-field assumptions,

obtained through the use of an "age" variable in the calculation of nonlinear

effects

Precedin parleblank
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The present procedure assumes a horizontally stratified atmosphere with horizontal

winds. This limiting assumption is of great practical interest and considerably simpli-

fies the calculation. However, the effects of wind turbulence have not been considered.

The analysis is largely a rational synthesis of existing theories described in the

literature andincludes some new theoretical development. A principal new theoretical

development is in the calculation of ray-tube area. The analysis is also new in the care-

ful piecing together of a number of calculations, principally in the relation of the wave

system and rays issuing from the aircraft stratified atmosphere with winds. This rela-

tion requires the consideration of a Galilean transformation connecting a local coordinate

system with the fixed coordinate system.

Figure 1 illustrates the geometry of the problem. At any given instant, t = tl, and

aircraft is in one position, and associated with the aircraft is a shock-wave system, which

near the aircraft is approximately conical and which extends down to the ground; an

observer senses the shock wave as a loud noise. The shock wave, however, was created

at an earlier time, t = t0, and the disturbances travel approximately along rays. The

key to the present method is the correct linear analysis of propagation in the atmosphere

by using the method of geometric acoustics, analogous to geometric optics. Therefore,

the following analysis can be divided into a number of topics, including (1) ray tracing_

(2) Blokhintsev invariant, (3) determination of the ray-tube areas, (4) flow near the air-

craft, (5) definition of an age variable, (6) determination of shock shape and magnitude,

and, finally (7) a comparison of theory and experiment.

SYMBOLS

A

X

horizontal component of area of ray tube

area vector of ray tube normal to rays

area of ray tube normal to rays

a speed of sound

ao

C n

initial speed of sound

ray velocity

velocity of propagation of wave normal to wave front (eq. (1))
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Cn

c O - cos 8

F

F i

Ii,12,I3

T
1

integral defined by equation (9)

integral defined by equation (9)

integrals defined in equation (8)

horizontal unit vector

M Mach number

unit vector normal to wave front

_' horizontal component of

p pressure

q perturbation velocity

r radius

radius vector

_' horizontal component of

S area distribution of equivalent body of revolution (primes refer to derivatives)

So = __oo (VE)d_I{_)

s backward facing distance from normal to wave front

T temperature

t time

t a time along aircraft trajectory
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tO

t1

u(z)

fi

ut

ut o

u ,uy

V

V E

x,y,z

xI,YI,-zI

time of initiation of disturbance

time at which disturbances form a shock

horizontal wind velocity as a function of altitude

wind vector velocity

horizontal wind component in xl,Y 1 coordinate system

initial horizontal wind velocity component in x,y coordinate system

horizontal wind velocity component

aircraft velocity

parameter defined by equation (7)

fixed coordinate system; east, north, and above ground, respectively

coordinate system alinedwith wave normal

/3= _m2 - 1

ratio of specific heats

aircraft climb angle

angle from horizon of ray

8o initial angle from horizon of ray

1
Mach angle, sin -1

v heading angles

linear phase
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P

%

q5r

actual phase

air density

initialair density

velocity potential

derivative of velocity potentialwith respect to x

azimuth angle (see fig.2)

azimuth angle of wave normal relative to aircraft

age variable defined by equation (11)

DISCUSSION

Ray Tracing

The first three topics are concerned with linear geometric acoustics.

is tracing of the waves as they propagate through the stratified atmosphere.

acoustics, the signal essentially follows wave fronts as given by

Cn=a+fi._

and as illustratedin the following sketch:

where a is the speed of sound, 0 is the angle from the horizon of the ray,

unit vector normal to the wave front,and _ is the wind vector velocity.

Ray tracing

In geometric

(1)

fi is the
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The ray velocity may then be given by

d_[= _= afi+fi (2)
dt

Equation (2) could be integrated for the rays if the value of fi was known, but this value,

in general, is not known. An expression relating fi to the changes in the speed of sound

and the wind velocity is

B (3)
dt

The simultaneous solution of equations (2) and (3) is required, and these equations consti-

tute a fifth-order system.

In the present method, if a stratified atmosphere is assumed, so that the wind is

horizontal and the temperatures and density are also known in stratified layers, then

equation (3) can be reduced to a form of Snell's law of geometrical optics. For use

herein, Snell's law then appears as

fi' _ "_cos 8 _ Constant along each ray (4)
an an

where _' is the horizontal component of ft.

The ray equations, obtained from the simultaneous solution of equations (2) and (4),

then appear as

dx acos 8sin v-u x

d(-z) a sin 8

dy =ac°s 8cos V-Uy
d(-z) a sin 8

dt 1

d(-z) a sin 8

where ux and Uy are the horizontal wind components and v is the heading angle.
The vertical distance z has been chosen as the independent parameter in place of t,

since most of the input data are known as a function of altitude. These equations may be

solved by quadrature, and in this quadrature Shell's law can be applied.
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Now, one remark on the minus sign in front of the wind velocity components, ux

and Uy. It has been said that "the north wind doth blow and we shall have snow." There

is a meteorological convention that a wind that blows in the direction of south is called a

north wind, so Uy is positive for a north wind and that is the only reason a minus sign

is used on these components.

Blokhintsev Invariant

In the preceding section, the path of the acoustic waves was traced, but none of the

important parameters, such as the pressure variation down the rays, have been related.

For a stationary atmosphere, Rayleigh derived an invariant as given below

or

where p is the air density, q is the perturbation velocity, An is the area of the ray

tube normal to the rays, and a is the speed of sound. For a moving atmosphere,

Blokhintsev derived an analogous invariant expression

PCl2Cn
•A = pq2Ac n sin 8 (6)

a

where A is the horizontal component of the area of the ray tube. Using the horizontal

component of the area is more natural, since the problem is defined in terms of a hori-

zontally stratified atmosphere.

Finally, for later use, a new invariant parameter V E is introduced and defined as

or

rE2= o( q2 nsin

V E = a_(pa2A sin 8 cos 8) 1/2

(7)
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Ray-TubeArea

In equation (7), the ray-tube area is of fundamental importance, and an expression

for the area must be determined. In figure 2 is depicted a two-parameter family of rays

required to define a ray-tube area. One parameter is the azimuth angle _ which is

measured with respect to the aircraft path in the direction the ray is considered to go.

The other is the time t measured by a clock on the aircraft at the instant the ray is

emitted. The precise definition of this ray-tube area may be given in terms of a

Jacobian taken at constant altitude, so that it is a Jacobian of the horizontal coordinates

x and y, taken with respect to the two ray-tube parameters, t and _b. The final

expression for ray-tube area for a maneuvering aircraft is given as

A sin 7o °h/I2o)[ - UtoIi) -
V sin _cos _ cosy o 78Co

cos eo

I(l sin To ol+ sin "_ s_nO ( I3- UtoI2) -

( °c°°v °c° 8_a)(I I22 )_-_a 0 _ 0_ 1I3 -

V sin _bcos _ cos To

cos 0o

(8)

where

y_ cos30 d(-z)
Ii(-z) = Zo a2sin30

y_ u t cos30 d(-z)
12 (-z) = Zo a 2 sin 30

a n

represents the aircraft climb angle (7 in ref. 1), Co = c-"6"_' andand where 70

If the aircraft were in straight and level flight, then locally, at least, the ray-tube

area would simply be proportional to the distance away from the flight path, so the
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ray-tube area would be expected to have terms that are proportional to a quadrature, an

integral taken from the aircraft downward. But now, because of maneuvering in which

the state of the aircraft changes as t a changes, the orientation of these two rays at a

later time may be different from the orientation of the two rays at an earlier time.

After quite a bit of algebra, a ray-tube area in the form of equation (8) is derived in

terms of the three quadratures I1, I2, and 13. These are taken from the aircraft

position downward toward the ground. The terms in the first two lines of equation (8) are

linear in the quadrature, and no terms which depend upon the maneuver are present. In

the third line, there is a term with derivatives with respect to t a and a factor which is

quadratic in the quadrature; these third-line terms are required for the maneuver

calculations.

The path of a ray as it propagates through the variable atmosphere and how its

pertinent quantities will change during the travel of the acoustic wave have been discussed,

The next section is concerned with connecting this system of rays to the aircraft.

Flow Near the Aircraft

The initial conditions must be obtained from a study of the flow near the aircraft

which is a well-established theory. The velocity potential for a body of revolution may be

given as

s,(xo)dXo

Ex
where Xo, Yo, and z o denote the source points and x, y, and z denote the field

points. The denominator may be factored into two terms, one term proportional to the

distance from the flight path and a second term, containing a parameter proportional to

the shape of the body of revolution, which has historically been termed the "F" function.

The velocity is obtained from

1 FiCx - _r,_br ) _ 1 FCX- _r,_br)
(2_r)l/2 M2rl/2

(9)

where

Fl(X - _r,_r) = ___1(_x-_r S"(Xl, q_r)dX 1

2_ ,)__o (x- _r- xl)l/2
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which is analogous to the Whitham "F' function. In this expression, S is the cross-

sectional area for a body of revolution, but for a body with lifting surfaces, for instance,

it is an effective cross-sectional area, as discussed in reference 1.

Through the perturbation velocity q/a, V E and F can now be related. In equa-

tion (7), V E is given in terms of q/a, and F is related to cL/a in equation (9).

After the necessary algebra, the relation between V E and F is given as

(Poao2COS _ cos2 0o) 1/2VE = _ sm _ F (10)

Age Variable

The analysis thus far has been linear; now the nonlinear aspects must be introduced

so that a realistic shock-wave structure can be obtained. For this an age variable, given

in equation ill), will be introduced.

The propagation velocity, equal to 6 = a_ + _ in the undisturbed fluid, is changed

by (Aa + q)_, where Aa is the perturbation in the speed of sound. This qudntity is

defined by

z_=_! : r_=Aq
Aa = 2 pa 2

so that the change in propagation velocity is simply (_ + 1)qH2 "

If the phase were expressed as distance s measured backwards normal to the

wave fronts, the signal would experience a phase shift arising from the change in propa-

gation velocity given by

d s: _+lq
dt 2

where t is time along the ray defined in equation (5).

In treating the phase, distinction must be made between the actual phase variable

and the linear-theory phase variable. The nonlinear effect is basically the difference

between the two. The actual phase is termed 41 and the linear phase is _. The local

distance phase s is related with

in propagation velocity in terms of

41 by ds = c n d_ 1. The expression for the change

41 becomes

d_l_ _+1 Cl = _+1 q

dt 2 cn 2 co cos 8
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This equation describes the phase shift for a particular point on the signal. The point on

the signal found at _ according to the linear theory is actually found at _1, which is a

function of _ and t.

The perturbation velocity q can be expressed in terms of V E by using equa-

tion (7) to obtain

d____l= _ T+I VE

dt 2Co cos 8(pA sin 8 cos 0)1/2

The variable t may be replaced by -z by using equation (5).

tion for the phase shift to a canonical form, the age variable r

variable is defined by

_- C d(-z)T

2Co J-z a sin 8 cos 0_A sin 0 cos 0)1/2

The phase shift is then governed by

d_ 1
"rE

in the canonical form desired.

To transform the equa-

is introduced; this age

With the basic assumption that the linear results for the ray-tube area and

Blokhintsev invariance still hold with only the phase shifted, the following relationship

holds:

VE (_I,T)= VE(_)

where VE(_) is the linear solution (independent of t or v

Here the actual phase _1 satisfies equation (12) at constant

dition _1 = _ at T = 0. The solution of equation (12) is then

(11)

(12)

(13)

because of the invariance).

and also the initial con-

_1 and T, which may become multivalued in

(14)

The linear phase _ is a function of _1"
When • is multivalued, equations (13) and (14) must be modified to take into account the

presence of shock waves.

In a uniform atmosphere, r is proportional to the distance to the one-half power,

whereas in an actual layered atmosphere, r is given by a convergent instead of divergent
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integral. (See eq. (11).) Now, the fact that r is given by a convergent integral means

that it has a definite upper bound, and thus the signal never gets older than a certain age.

This means that the signal freezes and approaches an asymptotic shape. No matter how

far the signal progresses, it never gets any more distorted than this asymptotic distortion.

Sonic-Boom Signatures

The analysis is now complete and the resultant shock wave or sonic-boom signature

can be defined. In figure 3 is shown a progression of curves needed in developing the

signature. The top curve, V E (_), is obtained by use of equation (10) from a knowledge of

the F function and is plotted against _. Utilizing the transformation of equation (14),

the curve appears as indicated in the second curve, which is essentially a shift in phase

and is multivalued. Because the compression parts of the signal move faster than the

speed of sound relative to the medium, the resultant signal is distorted. The high-

pressure parts of the signal move toward the head of the wave and the low-pressure parts

move toward the rear of the wave.

Eventually this curve will fold over. This folding over will indicate that at a given

point in the signal three different values can be obtained, and this, of course, is physical

nonsense. Actually, what happens is that a shock wave appears, and this shock wave may

be shown to appear where equal areas occur; that is, by using the equal-area rule, the

location and strength of the shock can be obtained. A convenient method of locating the

equal areas is shown in the third curve of figure 3, which is essentially the integration

of V E. By using the crossing of the upper branch of the curve, the location of the shock

wave is obtained, and the final signature is shown on the bottom curve.

RESULTS

The foregoing analysis has been applied to a specific aircraft, and the results are

shown in figure 4. Two examples are given, one for the aircraft flying at M = 1.4 at

35 000 feet, and the second for M = 3.0 at 70 000 + feet. The shaded area represents

the experimental results and the dashed curve represents the analytical results. Two

different atmospheric inputs were used in this analysis, one was a uniform atmosphere to

which was applied a standard correction factor which approximated the effects of a stand-

ard atmosphere; the second input was the standard atmosphere. For both inputs, good

correlation with experimental data, with regard to the magnitude of the pressure, was

shown; however, the Standard-atmosphere input gave much better agreement with regard

to signature length. This method has also been used for maneuvering aircraft by Haefeli,

as reported in reference 2.
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CONCLUDING REMARKS

A method for predicting the sonic-boom signature due to a maneuvering aircraft

has been presented. This method includes the effects of a variable, stratified atmosphere.

The method is based on geometric acoustic principles and accounts for the use of a non-

linearity to account for the weak shock field. The analytical results have been compared

with experimental data and excellent agreement has been shown, particularly with regard

to signature length.
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DISCUSSION

ALFRED GESSOW, NASA, Washington: Applying this method to a practical

case, to what extent is the maximum overpressure affected by a nonuniform

atmosphere as compared with a uniform atmosphere?

HAYES: Well, if you take a uniform atmosphere you get completely the

wrong results, so these have to be corrected, and they are usually corrected by

putting in the corrected acoustic impedance. In the atmosphere which is at a

constant temperature, which is the simplest case, the correction factor is

simply the square root of the pressure ratio.

Now, if you compare the uniform atmosphere method with this method for a

constant-temperature atmosphere, what you would come up with is that the area

under the lobe would be the same with both methods, and so, since the uniform

atmosphere method would give you too large a signal range to the N wave, it

would give you too low a value for the overpressure by a small amount. The

differences are not very great.

GESSOW: I guess what was in back of my question was someone's suggestion

that since there is quite a difference in temperature distribution in the

atmosphere, one might take advantage of this and fly a path, in the practical

case, so as to minimize the boom signature. However, if these effects are not

that great, then such a scheme may not be too practical.

HAYES: Yes, I don't think we can get away from the boom that easily.

LORNE C. DUNSWORTH, CCI Marquardt Corp.: Is the ground reflection factor

essentially 2?

HAYES: Well, the theory will give you 2. In practice various people

use 1.9 or something like this. As far as I know there is no theoretical

reason to use 1.9 instead of 2 so the justification for using 1.9 instead

of 2 is purely empirical, I don't like it, but this is the way I am

trained. I don't like things empirical.
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AN ANALYSIS OF FINITE-DIFFERENCE TECHNIQUES APPLIED TO

EQUATIONS GOVERNING CONVECTIVE TRANSFER

By Harvard Lomax

5
[ Ames Research Center r N_O : _ I _6

SUMMARY

A study is presented of fixed-mesh, finite-difference techniques as they

apply to the numerical calculation of hyperbolic partial differential equa-

tions. Effects on diffusion or dissipation and dispersion are considered.

INTRODUCTION

F

A survey of the presentations made at this conference points clearly to

the fact that the development of numerical wind tunnels for practical airplane

shapes is emerging as a reality. One aspect of this development is the possi-

bility of constructing finite-difference techniques that can, by means of a

computer, proceed directly from the basic partial differential equations and
boundary conditions to the solution for the entire flow field. The technical

journals contain many papers giving results of such solutions for a variety of

techniques. We have investigated some of these methods to see if there was in

some sense a "best" one to use for a given aerodynamic problem posed in the

Eulerian system. The purpose here is to review briefly some of the results of

this investigation.

PROBLEM DEFINITION

One can ask: What is the best way to numerically analyze a set of differ-

ential equations? If we seek to attach any generality to the answer, some

testing procedures must be constructed that are representative enough to serve

as a common denominator for the various techniques that can be posed. Tests

for ordinary differential equations are comparatively easy to construct. For

example, the numerical integration of u' E du/dt = _u + eut by any given dif-

ferencing technique enables one to classify that technique with respect to all

others when applied to the coupled set

_' = [A]_ + fCt) (I)

where the elements of [A] are constants. Here, by classify, we mean specifi-

cally to predict in a solution: (i) the accuracy given to the driving eigen-

values of [A]; and (2) the bound on the parasitic eigenvalues.
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The situation is much more complicated in the case of partial

differential equations. In such cases it appears to be necessary to prescribe

more about the physical nature of the problem being solved before attempting

to analyze, let alone optimize, a numerical method that might be applied to it.

The following is an attempt to describe some broad classes of problems that

occur in the study of the partial differential equations governing fluid

dynamics, each class having peculiarities which make the "best" choice of

numerical procedure peculiar to it.

Initial and Boundary Conditions

One categorization of fluid flow problems applies to the type of

restraints imposed on the various surfaces of contact. Three quite different
sets of conditions arise. One leads to the study of transient phenomena in

which, by definition, the initial and boundary conditions play about equally

important roles. These are probably the hardest problems of all from the

numerical viewpoint_ and they are not discussed directly in this report.

Another leads to the study of periodic phenomena in which the initial condi-

tions prevail throughout the complete time history of the solution. A certain

class of these problems leads to the least numerical difficulties and is given

the most attention in the following discussion. Finally, another set leads to

the study of steady-state problems in which, by definition, the final solution

is independent of the initial conditions or any transient behavior, and

depends, therefore, only on the boundary condition. These problems lead to

interesting numerical concepts that are often discussed under the name

"relaxation," but, for want of space, will not be considered here.

Each of the above categories is most efficiently analyzed by a different

numerical procedure; the reason being most effectively illustrated by examin-

ing equation (I). Its solution can be written in the form

u t I= + P.s. (2) [r

where_e °jt is the complementary solution, which is independent of _(t),

and P.S. refers to the particular solution. In the transient case both solu-

tions must be resolved with equal accuracy; hence, its relative difficulty.

The periodic cases considered in the following are those in which f(t) is

zero so that the particular solution disappears. In actual practice this rep-

resents a great simplification in the numerical adaptation of the boundary

conditions. Finally, the steady-state cases (as defined in the above) are

those for which _ is independent of t and the final solution is identical

to the particular solution which is

i R

u = [A]-I_ (3)

In this case the complementary solution disappears and all the eigenvalues oj

are parasitic.
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Genuine and Weak Solutions

Most of the analysis of numerical methods applies to linear equations.

Since the actual partial differential equations of interest in fluid flow are

generally not linear, the qualification is generally made that they can be

considered to be locally linear; and, in that sense, they can be relied upon

to respond in a predictable way to a given differencing scheme. The usual pro-

cedure is to choose a numerical method that has a given order of accuracy on

the basis of a local Taylor series expansion and, furthermore, satisfies some

stability requirement in the linearized framework. With the added realization

that one must also satisfy a dispersion requirement (discussed in the next

section) this approach is usually practicable and is widely accepted when the

dependent variables describing the flow field are everywhere continuous.

In most regions of a fluid flow the variables are continuous and the

mathematical solution in those regions is referred to by Lax (ref. I) as genu-

ine. However, if supersonic flows occur, shocks appear and surfaces along
which the dependent variables are discontinuous must be admitted. Lax refers

to the mathematical description of such phenomena as weak solutions. Quite

different numerical methods are recommended depending upon whether or not the

desired solution is purely genuine. Both cases are considered but, at this

point, the problem of calculating flows with shocks is considered in more
detail.

If a weak I solution exists in the region of numerical calculation two

possibilities arise: in one, the location of the discontinuity is in some

way determined and the differencing formulas are never permitted to use values

on both sides at once; in the other, the differencing formulas are allowed to

cross the discontinuities (thereby locating them automatically) but in such a

way as to limit the resulting errors. Only the latter is considered below.

Figure 1 shows what can be expected if one tries to represent a discon-

tinuity by a set of continuous functions. One period of a periodic step wave

is shown together with its representation by S to II harmonics from a Fourier

series. The gross representation of the step wave is clear, but the local

errors, caused by the omission of high-frequency terms, can be a sizable per-
centage of the jtunp at the discontinuity. Furthermore, the local error is not

limited to the location of the jump, but is spread over the entire step, about

equally for the number of harmonics shown. Examples of how particular

differencing schemes calculate a moving periodic step wave are given later.

Dissipation and Dispersion

Consider the equation

au au a2u a3u
a-_- = al _ + a2 _ + a3 _ (4)

ax ax

IThe term "weak", rather than "shock", is used because the formulas given

by Lax provide the strength and location of any discontinuous solution of

which the Rankine-Hugoniot is only one.
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If at t = 0 the initial condition u = ei_x is imposed, the oscillatory

solution

u = exp{-a2m2t + im[x + (a I - a3m2)t]l
(5)

results. If a 3 is zero, the term a I is the speed of convection of u

or the wave speed. It is also, in such a case, the slope dx/dt of the

characteristic in the xt plane. Clearly, from a glance at equation (5), a2

controls the damping of the solution. In heat conduction problems a 2 is

referred to as the diffusion coefficient. In the Navier-Stokes equations,

when multiplying terms in which u represents a velocity, it is referred to

as the coefficient of viscosity. The term a 3 is a measure of dispersion or

phase shift. When a 3 is not zero, the wave speed is (a I - a3_2) which

differs for each _, that is to say, for each initial frequency.

If a2 in equation (4) is zero, the equation is said to be conservative

for u. Let the real part of equation (5) be the solution and let u 2 be

representative of the "energy" of the system. If a2 is zero, the "energy"

is conserved and

I_/_u 2 dx = _ (6)

regardless of t.

Of course conservation laws are extremely important to the physicist. In

fact the partial differential equations for fluid dynamics represent the con-

servation of mass, momentum, and energy. Because of this, most modern numer-

ical techniques used to solve conservative systems are constructed so that the

diyferenae equations are also conservative. That is to say, some summation

(i.e., numerical integration) of certain components over the space mesh is

forced to be invariant with the timewise calculation. The point to be made

here is that such techniques control the gross effects of terms such as that

containing a 2 in equation (4) -- that is, they are numerically stable and

nondissipative; but they have no such control on terms such as that containing

a3. This we see at once because the integral in equation (6) is not only

invariant with t but also with a 3. In short, conservative differencing

methods tend to force all of their numerical error into dispersion.

THE SIMPLEST REPRESENTATIVE CONVECTION EQUATION

The simplest partial differential equation containing convective

phenomena is

_u _u

= -c

It has been used as a representative equation by many authors and is

(7)
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sufficiently profound to display many of the difficulties involved in the

numerical calculation of fluid flow. If c is a constant and periodic

boundary conditions are imposed, any initial variation of u is transmitted

in time as a wave with velocity c in the x- direction (see eq. (5)). In

the following we consider two kinds of such waves: one, simple harmonic waves

moving from left to right as time proceeds (the direction is given to fix the

phase shift); and the other, a step wave whose harmonic analysis is shown in
figure i.

If c in equation (7) is set equal to u, a nonlinear equation results

which is often used (ref. I) as a model that is representative of the non-

linear, shock-like phenomena contained in fluid flow problems. In the

following it is used to analyze a single, nonperiodic, weak solution moving

from left to right as time proceeds.

TIME-CONTINUOUS METHODS

There are two distinct approaches to the numerical calculation of

equation (7) in conventional fixed-step meshes. The choice of one or the

other depends mostly on whether or not the conditions are such that a weak or

"shock-like" solution is contained in the answer. In this part we survey

methods that are appropriate for problems whose solutions are entirely genuine.

If the right side (space derivatives) of equation (7) is replaced by

some discrete differencing scheme but the left side (time derivative) is

allowed to remain continuous, the equation reduces to a set of coupled ordi-

nary differential equations identical to equation (1). If c is a constant,

the solution to these equations is given by equation (2) in which P.S. is

zero if the boundary conditions are periodic. We note that the solution is

critically dependent upon the eigenvalues _j.

Consider the following simple differencing scheme for the right side of
equation (7)

(au) _ 1 [ + 28uj (1 8)Uj+l]_x j 2-_ -(1 + 8)uj_ 1 + -
(s)

If the constant 8 is taken to be -1, 0, or +1, equation (8) represents a
forward, central, or backward differencing scheme, respectively. The order

of the error term is the same for all nonzero 8, but the eigenvalue structure

of [A] is drastically altered by various choices of 8 in the region indi-

cated. In fact, the real parts of the a_ can be positive, negative, or
zero, depending on the value chosen for . All of this takes place without

any regard for the physical nature of the problem.

However, the situation is clarified if we ask not what is the error

introduced by replacing au/ax in equation (7) with equation (8), but what
is the exact equation solved by the difference-differential combination? This

latter equation turns out to be
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_U = -C _U + CS_X _2U CAX2 _3U + (9)
Dt _X 2 2 6 3

DX _X

It is easy to show that all even derivatives in this equation are multiplied

by 8 and all odd ones are independent of 8. Comparing with our previous

discussion of equation (4), we see that any nonzero choice of 8 introduces

a dissipation or diffusion term into the equation actually being solved, a

term that is completely alien to the nature of the physical situation modeled

by the original equation (7).

We have now arrived at an important point. If 8 is set equal to zero

and equation (8) replaces the space derivative in equation (7), a numerical

technique has been constructed that guarantees the conservation of "energy" in

the sense discussed in equations (4) through (6). Combined with an appro-

priate timewise numerical integration, the method is stable and nondiffusive.

It is apparent, however, that a wave of frequency _ which travels in the x-

direction with the speed c in an exact solution, will travel with a speed

approximately equal to c[l - (_2Ax2)/6] in the numerical computations. The

entire error in the space differencing appears in dispersion. In the simple

problem being considered all central differencing schemes for _u/_x are

conservative, the higher the order, the less the error in dispersion.

In order to illustrate the above discussion it is necessary to discuss

the error brought about by the n_hmerical integration of the time variable in

the intermediate, time-continuous form that arises after the spare deriva-

tives are made discrete. One of the principal reasons for approaching the

problem from this point of view is that this kind of integration (i.e., the

numerical solution of coupled ordinary differential equations) has been so

thoroughly analyzed. Application of methods such as t_e Runge-Kutta (or any

other explicit, one-root method) to equation (i) reduces that expression to a

set of difference equations the solution of which, after n time steps of At,

can be written

u n = + P.S. (10)

where each _j is related to a corresponding oj in equation (2) by a

polynomial of the form

k

lj = 1 + bl(ojAt) + b2(ojht) 2 + • • • + bk(_jht)
(11)

The b k depend on the particular method, and for maximum accuracy are made to

be 1/kl in which case _j is equal to a truncated Taylor series expansion

eOj Atof

Here we need only consider the time-continuous form of equation (7) in

which some central differencing scheme has been used for _u/_x and periodic

boundary conditions applied. In such a case all the oj are imaginary, and a
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fourth-order Runge-Kutta method provides the relationship between _j and BjAt

shown in figure 2 (note that aj = £5j). It is clear from inspecting equation

(10) that the time integration introduces no dissipation for [_jl = 1, and is

unstable for [_j[ > 1. If I_j[ < 1, dissipation is introduced by an amount

depending upon how much less than one it is. If we study figure 2 with these
remarks in mind, we arrive at the following conclusions regarding the effect

of applying the fourth-order Runge-Kutta method to the problem posed:

1. For small enough At there is practically no dissipation (< 1 per-
cent after 700 steps if BAt _ 0.3).

2. Any frequency such that SAt _ 2.6 is heavily damped.

3. For a spectrum of frequencies such that @maxAt _ 2.6, the method

acts as a low-pass filter, heavily damping the high frequencies without
affecting the low ones.

Finally, before the illustrations are presented, something should be said
about the ratio of step sizes At/Ax. In classical studies of the numerical

solution of equations similar to equation (7), considerable importance is
attached to the term _ _ cAt/Ax, which is often referred to as the Courant

number. The condition is often imposed that _ must be less than or equal to
one. Physically we must recognize that a "domain of dependence" exists in
hyperbolic partial differential equations and the above condition is based on

that concept. In the following, v will be presented as high as 2.5 with
quite acceptable results. This comes about, however, because the Runge-Kutta
type methods used for the time integration are sequences of predictor-
corrector formulas and the value of _ is not connected to the characteristic

cones in the usual way. Actually, in no case presented did the numerical

method violate the principle involved in the "domain of dependence."

Figure 3 shows the effect of dispersion caused by a three-point central
differencing of _u/_x in equation (7), c being a constant. The exact
solution

u = sin 6_(x - ct)

is shown by the solid line between x = 0 and 1.0 after 200 and 500 time steps
had been integrated using a fourth-order Runge-Kutta method." In the x
differencing 50 x points (excluding the last point) were used so Ax = 1/50.
Since At was chosen such that cAt/Ax = 1, 6_cAt = 6_/50 _ 0.38. This is

representative of 5At = 0.38 in figure 2, so practically no damping can be
expected over several hundred time steps, and this is in fact verified. The
dispersion, however, is quite evident.

Figure 4 shows how the dispersion can be minimized by increasing the
order of the x-wise central differencing schem_ and figure 5 shows how dis-

sipation can be brought about by increasing the time step so that BAt in

figure 2 falls in an area for which IXj[ is significantly less than one.
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Figures 6 through 8 show the effect of analyzing equation (7) by the

Runge-Kutta method when the boundary conditions are periodic and the initial

condition is a step wave. Figure 6 shows the results after t has been

increased from 0 to 40 using, again, 50 equally spaced x points. In this

case equation (8) was used for the x derivative and 8 was taken to be

0.0, 0.1, and 0.2 for the three cases shown. The effect of adding "artificial

viscosity" in this fashion is evident and typical. Figure 7 shows the first 5

time steps in a method which puts no damping in the _u/_x approximation (by

choosing 8 in eq. (8) to be zero), but does put damping on the higher fre-

quencies in the composition of the time dependency, by fixing At at a value

such that OmaxAt in figure 2 is around 2.5. Figure 1 shows what happens

when all of the high-frequency terms above the limits 5 through Ii are removed.

Figure 7 illustrates the initial phase of their gradual removal. Figure 8

shows how such low-pass filtering methods resolve a periodic step wave after

the same elapsed time as was used for the results presented in figure 6 for

methods that damped all frequencies.

FIXED-MESH APPROXIMATIONS TO THE METHOD OF CHARACTERISTICS

If a problem contains both a genuine and a weak solution, the "best"

numerical procedure would compute both solutions with a given accuracy as if

the other were not present. A popular procedure for doing just that in two-

dimensional and axisymmetric flows is the well-known method of characteristics.

In two-dimensional, linearized flow-field analysis, the equispaced, fixed-mesh,

second-order differencing scheme of Lax-Wendroff is identical to the method of

characteristics when a parameter similar to the Courant number is set equal to

one. In higher dimensional and nonlinear cases, such a correspondence does

not exist. Nevertheless, the published results of a large number of investi-

gators have shown that this method (or a variant of it) gives acceptable

results under the more stringent conditions.

Almost all second-order fixed-mesh difference schemes in popular use

(e.g., refs. 2 through 8) for calculating flows with embedded shocks are

identical to the Lax-Wendroff method when applied to the very simple linear

form given by equation (7). When applied to higher order or nonlinear

equations, however, they have individual differences. Some of these methods

were tested under common conditions, and the one recommended here, both from

the point of view of accuracy in resolving a genuine as well as a weak

solution, and simplicity in programming, is that presented by MacCormack

(ref. 8), As applied to equation (7) it can be written in several predictor-

corrector forms, one of which is

( n) }
fin+l = u9 cat un - ujj j _x j+:

(12)

u_ +I i f~_ +I u_ cat /fin+l
J =: ukJ + j Z-_ \ j j-_/j
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When applied to the solution of the periodic wave shown in figure 5,

equations (12) gave the results shown in figure 9. Again 50 x points were

used. Various values of the ratio cAt/dx were chosen and all five cases

were run for the same total time, which was identical to that for the 200

time step case in figure 3. The low Courant numbers show nearly the same dis-

persion as in figure 3 and considerably more dissipation. The higher Courant

numbers show very little dispersion or dissipation because here the method is

approaching the method of characteristics which is exact.

The results of applying equations (12) to the periodic step wave are

shown in figure i0 and are typical of the Lax-Wendroff methods for linear

problems when the mesh points do not lie along the characteristics as time

proceeds.

The important nonlinear case in which equation (7) is replaced by

aU = _ a(U2/2)
at ax

(13)

is illustrated in figure ii. The figures show how a discontinuity (or

"shock") moves from left to right started by setting u = 1.0 on the upper

level and u = 0.0 on the lower one. The upper two figures illustrate the

behavior for time-continuous methods with damping entered through both the

and the t derivative as explained previously. The lower figure shows the
results for MacCormack's method.

On the basis of these (and similar) tests MacCormack's version of the

Lax-Wendroff method was used to analyze the conical flow field about a tri-

angular wing mounted on a cone. A Hach number was chosen such that the wing

edges were sonic, and the combination was placed at angle of attack. Both

the compression and expansion sides (which, of course, are independent of one

another) were computed. A typical result for the pressure distribution along

the body and wing surface and vertically through the shock layer is shown in

figure 12. Further preliminary details are presented in reference 9.
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Figure 2.- The absolute value of the numerical root _ versus the product of

the step size, h, and the absolut_ value of the time continuous root,

_ lio|, for the fourth-order Runge-Kutta method.
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200 TaME STEPS
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3 POINT CENT D_FF, 4TH RUNGE KUTTA
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Figure 3.- Pure dispersion in a time-continuous method; solid line, exact method;

dots, numerical.

Figure 4.- Fourth-order Runge-Kutta time integration of a periodic harmonic

wave defined by 50 x points. Top: _ _ cAt/_x = 2.5, 3-point central

difference. Center: 9 = 2.0, 5-point central difference. Bottom: v= 1.6,

7-point central difference.
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Figure 5.- Fourth-order Runge-Kutta time integration of periodic harmonic

wave defined by 50 x points. All cases represent 3-point central differ-

ence. Top: v = 2.5. Center: v = 1.6. Bottom: v = 0.8.

Figure 6.- Fourth-order Runge-Kutta time integration of periodic step wave

defined by 50 x points. Results given for v = 1.0 after t = 40 cAx.

Beta in equation [8) is 0.0 for top, 0.I for center, and 0.2 for bottom.
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Figure 7.- Fourth-order Runge-Kutta time integration of periodic step wave

defined by 50 x points using 3-point central differencing scheme and

= 2.5. Results shown after i, 2, 3, 4, and 5 steps, top through bottom,

respectively.

w

A_J
Figure 8.- Fourth-order Runge-Kutta time integration of periodic step wave

defined by 50 x points. Top: v = 2.5, 3-point central differencing.

Center: _ = 2.0, 5-point central differencing. Bottom: v = 1.6, 7-point

central differencing.
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Figure 9.- Lax-Wendroff solution of periodic harmonic wave defined by SO x

points.
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Figure i0.- Lax-Wendroff solution of periodic step wave defined by 50 x points.
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3 CENT B = O.OB

COURANT = 2._

3 CENT. B = 0.20

COURAWT = 2._

LAX WENDROFF 1COURAWT = I 0

BO × POINTS INITIAL WAVE AT 2_

Figure ii.- Solutions of nonlinear equation (13). Top and central represent

fourth-order Runge-Kutta integrations with various forms of damping.

Bottom represents MacCormack's version of the Lax-Wendroff method.
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CONICAL WING-BODY COMBINATION
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Figure 12.- Development of flow about a conical wing-body combination using

MacCormack's method. Solution shown not fully converged.
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DISCUSSION

RAYMOND SEDNEY, Martin Company: I hate to in any sense detract from the

interesting material you presented, but I want to raise a strong objection to

the rather provocative opening statement about numerical wind tunnels being

on the verge of appearing. I can find statements like that going back to

1948 - or a little earlier than that - when there was a tremendous break-

through on computing machines, and people really expected this.

I personally think it is rather dangerous to make statements like that

because I feel the government wastes a great deal of money supporting work

where the sales pitch is exactly that: you know, we are going to replace wind

tunnels with computing machines.

So I would like to ask you a question. Do you visualize this happening

in the next one year, or ten years or a hundred years?

LOMAX: That's too loaded a question, but I think that each year I can

see significant progress in this area, and I think that we can cut back on

wind-tunnel tests and rely more and more heavily in certain well understood

areas on the methods that are being developed, and as they get more and more

sophisticated they can go hand in hand.

When you bring in viscosity and turbulence and all this sort of thing,

of course, I can't answer; perhaps that's a hundred years. But when you bring

in the Eulerian forms of the equations, and other computations such as are

presented in the other papers, you begin to get a feeling that yes, there is

something more immediate that can be relied upon.

SIDNEY A. POWERS, Northrop Corp.: This is a tremendously fascinating

piece of work, Mr. Lomax. I would just like to ask what is the difference in

the Langley or the Ames method that made it so smooth? Could you describe

the finite difference method you said you developed here that made it so

smooth?

LOMAX: The details of the method are outlined in the written version.

I have picked here a case (I didn't do it deliberately; actually I chose some

cards at random when I had the camera working) where the shocks were

exceptionally sharp. This is the best you can expect, one reason being that

in this case the shock structure is rather uniform. If you'have a problem

where you have a rather weak shock in the presence of a strong one and try to

use the same differences in every direction for both, you get a smearing of

the weaker one. I do say that we did analyze a lot of these numerical

methods, and this one was picked because it did give us the sharpest resolu-

tion we could find. As I say, the details are in the written version.

PETER B. S. LISSAMAN, Northrop Corp.: I would like to make a few

comments which were suggested by a previous comment. First, I'd like to say

this was a very entertaining and illuminating paper.
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I am still interested in your remarks about electronic wind tunnels

because I think that they are rather a long way away. It seems to me, as
somebody who has spent a lot of sleepless nights and even some sleepless days,

over trying to design wings, that the only interesting problem in wings axe
when the flow shows compressible regions, which is the cruise state of the

airplane, or when it shows highly viscous separated regions, which is the
landing state for the airplane. In fact, we are forced these days, almost, to
make all our airplanes into biplanes, only we choose to pack the one wing
inside the other one, and get it out with a lot of trouble when we want to

land the airplane.

Now, I am very interested in all these incompressible techniques that are
being developed, and I think I made some remarks yesterday which didn't sound
the way I meant them to sound. I think that is the way we have to go to
start, but I do believe that possibly we have to devote more attention to
rather rough and crude numerical techniques toward tackling the very difficult
problems, the problems of imbedded supersonic regions or imbedded viscous

regions. If we could do that to within even 15 percent, then we could use the
computer as a very valuable preliminary design tool.

I am thinking about, specifically, for example, a wing, perhaps of a

subsonic airplane. You start to notice some shock pattern there in a wind
tunnel, and then you ask your design engineer, "If I try to waist the fuselage

or do something or maybe droop the leading edge a little bit, how would that

help us?" Tae fact is that none of our computing methods, at least that I

know of, can give us any i_dication about what we can do there.

Now, I will admit it is a formidable problem. As you say, it may be a
hundred years away, but I think maybe that is all the more reason for us to

address ourselves to some of those hard, messy problems at which we are

forced to make approximations than to spend too much time toward refining

known, regular, analytic techniques.

I would like to point out that this is in no way directed toward the talk
that you have given. In fact, I just used the comment as an excuse to stand
up and say this.

EARLL MURMAN, Boeing Scientific Research Laboratories: There was a

research paper published in "Mathematics and Computations" in the July 1969

issue authored by Abarbanel and Zwas, who did a shock wave calculation using

the Lax-Wendroff technique, similar to what you have shown today, only they

used what they called an iterative technique of guessing Lax-Wendroff solu-

tions and iterating. They ended up with a very sharp profile such as the one
you showed that MacCormack produced. Would you care to comment, if you are

familiar with this paper, how the iterative use of Lax-Wendroff technique

damps the oscillation that is usually shown with shock wave?

LOMAX: I am not, right offhand, familiar with the paper. The particular

method which you saw here tends to damp the oscillations because it takes

first one side to evaluate the space derivative and advance the solution and

then, if you like, iterates or, if you like, corrects as in a predictor-

corrector sequence, takes the other side for the same derivative to make the

second advance. Then it repeats the cycle.

262



MacCormack's method actually holds true when you have three-dimensional

problems in which case you use all four sides in a cycle. In this way, in

each individual advance, he is sampling only one side and hopefully not cross-

ing the shock. I believe that is one secret of his success.

GINO MORETTI, Polytechnic Institute of Brooklyn: I am a little more

familiar than you, probably, with that paper. A friend of mine at Sandia

Corporation made some experiments on that technique, and found a very great

dispersion. What you saw in the published paper seems to be a squeezed

figure. In looking at the figure very closely, it seemed to me that about

20 points were used to cover the shock transition. This is not any better

than what one obtains by using the old-fashioned Lax scheme. I didn't spend

too much time analyzing this paper, but offhand it seems to me that what they

achieved with this iterative Lax-Wendroff technique is to put a lot of addi-

tional viscosity which was not present in the original scheme.

I would like to make another comment about the MacCormack technique. I

became aware of it a few days ago, and I played a little bit with it. Now,

in simple, nonlinear problems where we know the exact solution it came out

that not only the order of magnitude but even the numerical value of the

errors coincide almost perfectly with the modified version of the Lax-Wendroff

technique, which I have used many times.

Now, that is very interesting, because I must confess that my way of

using the Lax-Wendroff scheme is much more complicated than the MacCormack

scheme as far as programming is concerned, so I am now planning to switch to

MacCormack's technique systematically. However, I wouldn't say that

MacCormack's scheme allows you to go through a shock, because I think that if

you go through a shock you do something against physics, and there is no

mathematical gimmick which can do that.

LOMAX: You can go through a shock with the method of characteristics.
MacCormack's method tries its best to do that. It fails insofar as it can't

do it exactly.

I didn't bring this out, but one of the big advantages of MacCormack's

method is its simplicity in programming and its low storage space.

MORETTI: Yes, I agree very much with you, and I even believe that such

a scheme could be adopted using centered differences all the time, which is a

trifle simpler than in MacCormack's version. I tried these centered differ-

ences on one problem with no deterioration of the results.

One great advantage is that one can handle viscous flows, probably, with

no coding difficulty, whereas when I tried to use my original scheme for a
viscous flow the coding became cumbersome.

And if I can add a word of optimism from the East Coast to what you said,

I am sure that within two or three years we will be much _etter off with this

electronic wind tunnel, so, Ray, don't be worried. It took time and money to

to develop conventional wind tunnels and the same happens for these numerical

techniques, but we are definitively making progress.
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LOMAX: Apparently, the phrase numerical wind tunnel is a good one to use

to bring out discussion.

FRED R. DEJARNETTE, Virginia Polytechnic Institute: I notice the shock

waves looked very good and sharp, particularly compared to the basic Lax

scheme. However, the basic Lax scheme when applied to just a basic Prandtl-

Meyer expansion smears out expansions tremendously. I was wondering how the

expansions in the MacCormack technique compared, say, to just basic

Prandt l-Meyer expans ions.

LOMAX: The written version again, I think that will help. The Lax

method is very dissipative and dispersive if used off design, and I definitely

recommend that you do not use the Lax method unless you really know what you

are doing. The Lax-Wendroff is second order, and therefore it is much less

dissipative. It does have troubles when you come to discontinuities in the

slope, as any second order method will, and some of the wiggles you saw in

the film were evidence of this. Aside from this difficulty we have used the

method on expansion fans and have gotten very good results.
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A NUMERICAL METHOD FOR COMPUTING THREE-DIMENSIONAL VISCOUS

SUPERSONIC FLOW FIELDS ABOUT SLENDER BODIES

L. Walitt and J. G. Trulio

Applied Theory, Inc.

and

L. S. King
Ames Research Center

SUMMARY

A numerical method has been developed for calculating steady, three-

dimensional, viscous, compressible flow fields about slender bodies at angle

of attack. The method is based on the equivalence principle and on a two-

dimensional, time-dependent numerical technique for solving the Navier-Stokes

equations. The equivalence principle relates the axial coordinate of the

three-dimensional problem to the time coordinate; thus, the steady three-

dimensional problem becomes directly analogous to the two-dimensional problem

of a cylinder (not necessarily circular) expanding with time. The basic fea-

tures of both the numerical'technique for two-dimensional, time-dependent

flow and the equivalence principle as applied to this problem are presented.

Since the equivalence principle assumes axial velocities everywhere near

the axial component of the free-stream velocity, the no-slip condition at the

body surface in the axial direction cannot be applied. The flow field,

including separation and body vortex development, is then predicted with a

model incorporating a viscous crossflow with an inviscid axial flow. An anal-

ysis of the errors introduced by this approximation is presented.

Numerical calculations were made and compared with experimental results

for an ogive-cylinder and an airplane fuselage configuration. Flow conditions
were M_o = 1.98, R_ = 4.68x106/ft, and a = i0° for the ogive_cylinder and

M_ = 2.50, R_ = 9.1×106/ft, and _ = 15° for the fuselage configuration.

Results are presented as static pressure distributions on the body surface,

velocity vector plots, and contour maps in the flow field at selected axial

locations. Good agreement between theory and experiment was obtained; maximum

deviations of numerical surface pressures from corresponding experimental

values were no more than 6 percent of free-stream dynamic pressure for both

problems. However, some differences were noted. Boundary-layer separation

and body vortex positions differed from experimental locations on the ogive-

cylinder, and the shock induced by the fuselage canopy was predicted at a

slightly different location. These differences are considered attributable to

neglect of axial viscous effects, exclusion of turbulence phenomena, and the

approximations introduced by the equivalence principle in describing the
inviscid axial flow.
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INTRODUCTION

For highly maneuverable advanced aircraft as exemplified in figure i, the

prediction of flow-field characteristics for nonsimple geometries at high

angles of attack and high flight Mach numbers transcends the capabilities of

linear theories. The need thus exists for an analytical or numerical method

for providing an accurate, detailed description of the vehicle flow field for

determining both fuselage configuration and inlet-airframe integration

effects.

Prediction of the three-dimensional flow field about a slender body

immersed in a supersonic airstream presents a formidable mathematical problem

to which no exact solution has been obtained, either analytically or numeri-

cally. Successful numerical methods using the method of characteristics and

the equivalence principle have been developed for three-dimensional, steady,

inviscid flow fields. The work of Gallo and Rakich (ref. i) is representative

of the characteristics approach while the development by Van Dyke (ref. 2) of

the theory introduced by Hayes (ref. 3) is representative of an approach that

uses the equivalence principle.

In this research program the equivalence principle was applied to convert

time-dependent viscous, compressible flow calculations in two space dimensions

to steady motion of a viscous, compressible fluid in three space dimensions.

The two-dimensional flow calculations were obtained by numerically solving

the time-dependent compressible Navier-Stokes equations. In this paper the

numerical technique is described in detail and results of its application to

an ogive-cylinder body and to a fuselage forebody are presented.

SYMBOLS

a

a

A

AI

A5

BI

B2Cz')

B_(z')

Lagrangian coordinate

radius

surface area

abscissa of center of smaller circle of fuselage cross section

abscissa of center of canopy circle

ordinate of center of smaller circle of fuselage cross section

ordinate of axis of the body with respect to the horizontal

reference line

slope of axis of the body with respect to horizontal reference
line
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B5

B(x,y, z)

C

CD

C L

Cp

Cp

C V

d

d

E

f2

H

m

M

M

IAMI

n X ,ny, n z

N

N

P

Ps

ordinate of center of canopy circle

surface of the body

local sound speed

drag coefficient,
drag force

q_A c

lift force

lift coefficient, q Ac

p - P_
pressure coefficient,

q_

specific heat at constant pressure

specific heat at constant volume

diameter

displacement vector

specific internal energy

bounded oscillating function used to determine discretization

error

stagnation enthalpy

direction cosines of the normal to the body's surface in the

x, y, and z directions, respectively

mass

Mach number

momentum vector

absolute error in Mach number

direction cosines of the normal to a shock surface in the

and z directions, respectively

cycle number

mesh point density

pressure

stagnation pressure

X, y,
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IAPI

Pp

q

R

R1

R2

R3

R(j ,k)

R' (j,k)

S

S(x,y,t)

t

At

T

U

U

U

V

V

V

W

W

X

X !
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absolute error in pressure

pitot pressure

dynamic pressure, q = (I/2)pU 2

Reynolds number

radius of smaller circle of fuselage cross section

radius of larger arc of fuselage cross section

radius of canopy circle

position vector of a mesh point about a fuselage cross section

position vector of a mesh point about a circular cross section

entropy

surface describing system of shock waves about a body

time

time step

temperature

velocity component in x direction

one-dimensional velocity, U(a,t)

velocity vector

velocity component in the y direction

specific volume

volume

velocity component in the z direction

work rate

coordinate normal to plane consisting of the body axis and the

perpendicular to that axis

coordinate normal to the plane consisting of the horizontal

reference line and the perpendicular to that line

Lagrangian coordinate, X = X(a,t)



Y

y'

Z

Z t

c_

c_e

Y

£

P

T

()
S

( )s

()oo

( )o

()

( )a

()c

coordinate normal to body axis

coordinate normal to the horizontal reference line

coordinate along the body axis

coordinate along the horizontal reference line

free-stream angle of attack with respect to body axis

local angle of attack with respect to a horizontal reference line,

tan-i Ivelocitz in Z' direction)\velocity in z' direction

sideslip angle, tan-l( vel°city in x' direction)velocity in z' direction

ratio of specific heats, Cp
C v

discretization error in a property (eq. (29))

density

maximum slope of surface of body with respect to the free-stream
flow direction

stagnation condition

property downstream of a shock

free-stream condition

Lagrangian coordinate at time zero

reduced variable

actual variable

variable associated with body cross section

FORMULATION OF EQUIVALENCE PRINCIPLE

The two-dimensional time-dependent equations of motion (independent

variables x, y, t) can be transformed directly to steady-state three-

dimensional (x, y, z) equations for slender bodies through the Hayes equiva-

lence principle. The equivalence principle relates the steady.state flow

field over a slender body to an equivalent time-dependent flow field in one

less space dimension. In particular, steady three-dimensional flow about a
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body can be reduced under certain conditions to two-dimensional time-dependent

flow in a plane normal to the free-stream flow direction.

A simple example of the application of the equivalence principle is

illustrated in figure 2, namely that of steady flow over an axisymmetric body

at zero angle of attack. The steady-state two-dimensional axially symmetric

flow field is analogous to time-dependent one-dimensional axially symmetric

flow in a plane caused by an expanding cylinder. The cross-section plane of

unsteady analogy moves downstream with free-stream velocity and the outline of

the moving boundary is given by the trace of the original shape in the cross-

section plane. At the station z (see fig. 2), the steady_state flow field in

this plane is analogous to the flow field about the expanding cylinder at the

time, t = z/U_. To make the equivalence analogy valid, the normal velocity of

the expanding cross section Un, is given by the product of the free-stream

velocity and the tangent to the surface. Far from the body, free-stream con-

ditions are imposed (i.e., P = P , p = p_, u = v = 0).

According to convention, the free-stream flow direction is chosen as the

principal axis along which the linearization approximations for equivalence

are made. However, for bodies at angle of attack as illustrated in figure 3,

it is more convenient to choose the body axis as the principal axis. In

planes normal to the body axis, the cross sections can usually be defined in

terms of a few simple analytic expressions, which result in simpler, more

accurate surface boundary conditions and facilitate the development of finite

difference meshes about the cross sections. Because of this choice, free-

stream crossflow will exist as an upstream boundary condition, but this choice

of axis in no way affects the accuracy of the results.

It is convenient to discuss the equivalence principle in terms of flow

about a slender body at angle of attack. Let the z axis coincide with the

axis of the body, and let the cross section of the body lie in the x, y

plane (see fig. 3). It is also assumed that the z component of the local

velocity vector is approximately equal to the z component of the free-

stream velocity vector, that is,

w = U_ cos a (i)

Under this hypothesis, it follows that time-dependent flow in the x, y

plane transforms to time-independent motion in x, y, z space according to

the equations

z = cos at (2]

y = y [3]

x = x [4]

This result - the equivalence principle - is derived for an inviscid fluid in

appendix A.

In order for equations (2), (3), and (4) to represent a valid mapping

between a flow field in x, y, t space and a flow field in x, y, z space,
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the time-dependent solution in the x, y plane must be augmentedby a three-
dimensional boundary condition at the body surface

U cos a + _ v + _ u = 0 [5)
z _ y x

where _x, Ey, _z are the direction cosines of the normal to the body surface
in the x, y, and z directions, respectively. Equation (5) states that at

the body, the component of the local velocity normal to the body surface is

zero. The application of the boundary condition, equation (S), in the x, y

plane implies that the body cross section varies in time and that the velocity

2 2
normal to the surface is equal to -_zU_ cos a/J_'_y + _x" This normal velocity
expression reduces to the product of the axial velocity (U_ cos a) and the

local tangent to the surface.

A second boundary condition, a constraint on tangential flow at the body

surface, must also be specified. Since the full time-dependent Navier-Stokes

equations are solved in the x, y plane, a no-slip boundary condition is

imposed at the surface of the body. We require that

v£ - u£ = 0 (6)
x y

It is seen in appendix A that the boundary condition, equations (S) and (6),

are compatible with the assumptions inherent in the equivalence principle and

permit a time-dependent viscous calculation to be made in the x, y plane.

Thus, with the inclusion of boundary equations (5) and (6), a solution of the

two-dimensional time-dependent Navier-Stokes equations can be applied directly
to steady three-dimensional viscous flow.

The three-dimensional boundary layer on the body surface has been replaced

by a two-dimensional boundary layer since the no-slip condition is imposed at

the body surface only in the crossflow direction. This description of the

flow field is poor in the boundary layer, but appears physically reasonable

when either inertial forces predominate or crossflow viscous effects predomi-

nate in determining the flow field. Solving the Navier-Stokes equations in the

crossflow plane provides a mechanism for effecting flow separation and subse-
quent development of spiral vortex sheets on the lee side of a body at angle

of attack without recourse to empiricism. The extent that this model agrees

with the physical situation must be carefully documented by comparisons with
other methods and with experiment.

The computational procedure is then as follows. Initially we have a

uniform flow field in the x, y plane with a velocity in the y direction

equal in magnitude to U_ sin a. The slender-body cross section grows with
time in the x, y plane. At discrete times solutions of the full time-

dependent Navier-Stokes equations are obtained such that the cross-section

surface boundary condition, equations (S) and (6), are satisfied; also, the

flow far from the cross section is uniform with a crossflow velocity in the

y direction equal to U_ sin a. The time-dependent solution in the x, y

plane is then related to the steady-state three-dimensional flow field about

the body through the transformation equations (2), (3), and (4).
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DESCRIPTION OF THE NUMERICAL METHOD

The numerical method used to solve the time-dependent Navier-Stokes

equations in two space dimensions is embodied in a computer code called "AFTON

2PE." The finite difference equations in the AFTON 2PE computer code are

based on a physical model of the continuum. By a physical model of the con-
tinuum, it is meant that a framework be defined from which finite difference

analogs of the full Navier-Stokes equations can be derived. The model utilized

in this paper is described in some detail below. Since the Navier-Stokes

equations are being used, this continuum model is not related to the particular

phenomenon which is under study: once a physical model of the continuum is

verified, its range of applicability extends to many flow situations.

In the conventional use of physical models, it is assumed that the

partial differential form of the Navier-Stokes equations applies in general.

A physical model is then postulated for the particular phenomenon to be

studied and the equations are reduced to ordinary differential equations to

obtain either an analytical or numerical solution. The Lees-Reeves (ref. 4)

near-wake model is a good example of a conventional physical model. This

model is concerned with the base flow and near-wake subregions shown in fig-

ure 4. To obtain a solution the boundary-layer approximations are used and

pressure and velocity profiles in these regions are assumed. However, this

solution is only valid in the base and near-wake regions; whereas, the entire

flow field of figure 4 can be predicted with one numerical scheme utilizing

a valid model of the continuum.

For illustrative purposes, the space-time continuum model employed in

this research is presented in detail for the case of time-dependent one-

dimensional flow of a compressible, inviscid fluid. This model was implied

by a set of finite difference equations developed by yon Neumann and

Richtmyer (refs. S and 6). Trulio and Trigger (ref. 7) then derived the con-

tinuum model from a careful analysis of the von Neumann-Richtmyer equations.

Finite difference analogs of the continuity equation, momentum equation,

the First Law of Thermodynamics will be derived in a Lagrangian coordinate sys-

tem. Let a be the Lagrangian coordinate, and X(a, t) be the Eulerian coor-

dinate. That is, X(a, t) gives the position at time t, of a fluid element

that was originally at position a. Consider the Lagrangian coordinates al,

a2, and al/2 (al/2 = (I/2)(a I + a2) ) shown in figure 5(a). Since the system

is Lagrangian, the mass between the trajectories labeled a I and a 2 remains a

constant. Let the one-dimensional space continuum be represented by a dis-

crete set of zones, designated "thermodynamic" zones. At time zero, let the

boundaries of these zones be spaced at a constant interval Aa along the X

axis (see fig. 5(a)) and denoted by a£ (£ = 0, i, 2, 3, . , L). Let

each of the thermodynamic zones be one unit high and one unit wide. Consider

another set of zones designated "momentum" zones superimposed on the thermody-

namic zones, such that each momentum zone surface always divides the mass of

the thermodynamic zone which contains this surface in half. A schematic dia-

gram showing a momentum zone and two thermodynamic zones at the time t is
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shown in figure 5(b). The Eulerian coordinates which define the two thermo-

dynamic zones are X(a__l, t), X(az, t)• and X(a£+ I, t), while the Eulerian

coordinates of the momentum zone are X(a£_(i/2), t) and X(a£+(i/2), t).

The thermodynamic variables, such as internal energy, specific volume,

and pressure, are assumed constant throughout a thermodynamic zone. The

velocity is assumed constant throughout a momentum zone. Thus, thermodynamic

variables are in effect centered at the momentum zone surfaces; that is,

PZ = P(a£-(I/2)' t) denotes the pressure in the thermodynamic zone X(a£_l• t),

X(a£, t) which effectively acts at X(az_(I/2), t) (see fig. 5(b)). Momentum

zone variables are in effect centered at the thermodynamic zone surfaces;

that is, UZ = U(a£, t) denotes the particle velocity in the momentum zone

X(a£_(i/2) , t), X(a£_(i/2), t) which effectively acts at X(a£, t).

Since an explicit formulation is the goal, the variables of motion are

not only displaced spatially (as discussed above)• but they are displaced in

time as well. Let At denote the uniform time interval and tn (n = 0, I,

2, , N) denote the time after n uniform time intervals. The variables

associated with thermodynamic zones are defined at integer times; that is,

pn = P(a_ t n) denotes the pressure at the time t n. The momentum£-(1/2) -(1/2)'

zone variables are defined at half-integer times; that is,

U_ -(1/2) = U(a_, t n-(1/2)) denotes the particle velocity at a time tn-(1/2),

• t n- (1/2)and the Eulerian coordinate position X(a£ ).

Finite difference analogs of the continuity, momentum, and first law

equations follow directly from the physical model of the continuum presented

in figure 5(b). Since a Lagrangian coordinate system is employed, the zones

of figure 5(b) will be displaced continuously from their initial positions;

that is, al, . , aL to coordinate positions X(al, t), . . . , X(aL, t).

Let us calculate the properties at the time, tn, for the thermodynamic zone

having Lagrangian coordinates a£_l, a£ and the momentum zone having

Lagrangian coordinates a£_(i/2), a£+(I/2 ) . The initial values for this cal-

n-i n-I n-i n-i En-I n-i for
culation are P£-(1/2)' E£-(1/2)' v£-(1/2)' P£+(1/2)' _+(1/2)' v£+(1/2)

the thermodynamic zones and xn4-1' xg,n Xng+l, Ug-ln-(1/2)' ugn-(1/2), U_-(1/z)z+l for

the momentum zones. The objective is to update these variables by one time

step in an explicit manner.

The finite difference analog to the conservation of mass is derived from

the expression for the volume change of thermodynamic zone a£_l, a£.

_-(1/2) - V__(1/2 ) -- U
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where

n-I

V_,- (1/2)

n

V£- (1/2)

volume of zone a£_l, a£ at time tn-I

volume of zone a£_l, a£ at time tn

Based on equation (7), and the fact that the mass of material in the thermody-

namic zone a£_l, a£ has the constant value 0o Aa, we find that

In - vn-1 1 n-(I/2) _ U_- I/2)

v£-(i/2) £-(1/2) u£ __

Po At ] = Aa

(8)

where Po is the density at time zero, and V__(I/2 ) is the specific volume

of material in the zone at time tn (note that (Po Aa)v__(i/2) = V£-(I/2))'n

F

For an inviscid, adiabatic fluid, the first law equation for a system in

equilibrium is applicable:

DE Dv (ga)
D-T= -p D-T

The first law finite difference analog to equation (9a) is derived by first

writing down a finite difference analog to the term -P(Dv/Dt) and then equat-

ing this to the rate of change of internal energy in the zone. Since the zone

mass is constant and the pressure is homogeneous in a thermodynamic zone, the

term -P(Dv/Dt) becomes

C1/2) [p__ (1/2) n-I

mE-(l/2)

(gb)

where

mg_(I/2) = po Aa

On the basis of equation (9b), the finite difference first law equation

becomes

_ En-I ]
Po [E_- (I12) g-Cll2)J :

At Aa

n-I ] [U_- (I/2) ,n- (i/2)]-(I12)[P_-(I/2) + PZ-(I/2) - ug-1 J

.If

[

h

(10)

n-i is the specific internal energy of thermodynamic zone a£. I,
where E__(I/2 )

a£.
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The equation of state for a perfect gas is:

E = ev(,_ - l) (ll)

Finally, the finite difference equation of motion for momentum zone

a4_(I/2), a4+(i/2 ) becomes:

n n-I

M£ - M 4 [ (1/2) _ pn-(1/2)]At = (1/2) 4+(112)3

where

n-(1/2) 1 [ n-1 ]P4-(I12) = Y P_-(l12) + P4-(I12)

(12)

F

V

-D

pn- (I/2) I [pn + pn-I ]
4+(1/2) = YL4+(1/2) £+(I/2)J

n defines the momentum in zone a4 at time tn.and M 4

Equations (8), (9), and (10), derived from the physical model presented

in figure S(b), are solved in the following manner. First, the specific

volume, v__(1/2 ) , is calculated from equation (8) . Then, the pressure pn4_(1/2),

and specific internal energy E__(1/2 ) are calculated from equations (9), (10),

and (11). The continuity and first law equations are then solved for specific

volume and pressure in all thermodynamic zones. Based on the pressure field,

equation (12) can be solved for the momentum M_. The particle velocity

U_ +(1/2) is found from the forward extrapolation formula

n

u_+ (1/2) = 2 M-!_ n- (l/2)
m4 - U£

(13)

where

m£ = Po Aa

Integration of the particle velocity U_ +(1/2) with time establishes the new

Eulerian position, XD +1 This can be done for all momentum zones. Thus, all

the initial values cited above can be updated by one time step and the process
repeated.

The success of this method coupled with the failure of other more recent

numerical schemes to improve upon it, led Trulio and Trigger to a careful

analysis of these finite difference equations in order to discover the reasons
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for their success. They found that the finite difference equations possessed

the same self-consistency property of form as the original differential equa-
tions from which they were derived, that is, the finite difference equations

for momentum conservation and the first law implied an exact conservation of

total energy (internal and kinetic) finite difference equation (ref. 7). In

other words, the continuity, momentum, first law, and conservation of total

energy relations are redundant by one. In most other numerical schemes if
one tries to derive a conservation of total energy relation from finite dif-

ference analog of momentum conservation and the first law, error terms,

usually assumed to be "second order," are produced. These numerical error

terms are believed to be a primary source of the difficulties encountered in

many other numerical schemes. Appendix B demonstrates the self-Gonsistency

property of the finite difference equations (8) to (13).

In addition to self-consistency of form, the numerical method has the

following properties:

(a) Since the method is explicit, stability criteria must be met in

order to obtain physically meaningful numerical results. In gen-

eral, the time step must be small enough so that a sound signal

cannot cross a zone in a time step (refs. 5 and 6).

(b) The numerical error has been correlated for this scheme. It has

been found that the absolute error in a property is inversely pro-

portional to the linear mesh point density to the three-halves

power (ref. 8).

The physical model, from which equations (8) to (13) have been derived

has been extended to two space dimensions (ref. 9). In that work, specific

finite difference equations were formulated and their self-consistency proper-

ties demonstrated. Because they provide a base for the present calculation, a

brief description of the derivation of these equations will be presented.

Consider two-dimensional flow of a viscous, compressible fluid in the

x, y plane. As in the one-dimensional case, let us divide the continuum

into two types of zones; namely, quadrilateral zones and momentum zones. See

figure 6. The assumptions governing this analysis are as follows:

(a) All zones are polygons.

(b) The density, specific internal energy, pressure, stress tensor,

and velocity derivatives are homogeneous in a quadrilateral zone.

(c) The velocity vector is homogeneous in a momentum zone.

(d) The zones have unit thickness normal to the plane of motion.

As in the one-dimensional case the continuity and first law equations

are solved for each quadrilateral zone to determine the density, specific

internal energy, and stress. When the stress tensor depends only on strain,

the first law equation corresponds to that of thermodynamics. However, for a
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stress-rate of strain dependence, the first law equation is a relationship

involving internal energy, the specific internal energy being the difference

between total and kinetic energy. Based on the stress tensors in each of the

four quadrilateral zones which comprise a momentum zone (see fig. 6), the

momentum equation is solved for each momentum zone. To accommodate the equiv-

alence principle boundary conditions, the finite difference equations in

AFTON 2PE are written in a generalized coordinate system where the four mesh

points comprising a quadrilateral zone can move with arbitrary velocity. The

numerical method is described in detail for a generalized coordinate system

and an Eulerian coordinate system in two places (refs. 9 and i0).

All of the salient properties of the numerical method described in the

one-dimensional example are preserved in two-dimensions and will also be pre-

served in three spatial dimensions; in that respect the numerical theory is

internally consistent. The momentum and first law finite difference equa-

tions in two dimensions imply an exact finite difference equation for total

energy. The stability criteria are the same as in the one-dimensional case.

The one-dimensional correlation of absolute numerical error in a property

extends directly to two dimensions. In two dimensions the absolute numerical

error is inversely proportional to the area mesh point density to the three-

quarters power (ref. i0).

ORDER OF ERROR OF THE NUMERICAL METHOD

In this section the order of error of the numerical method is determined,

The numerical error is defined as the absolute difference between the actual

value of a quantity and the value computed numerically. The error in this

method stems from three sources, the equivalence principle, discretization

errors, and neglect of axial viscous effects. The errors inherent in the

equivalence principle lie in the neglect of velocity perturbations along the

free-stream flow direction and have been deduced by Van Dyke (ref. 2). The

discretization error is defined as the difference between the exact solution

to the continuum motion equivalence principle equations for a given system,

and the values of the flow variables computed from a finite difference approx-

imation to these equations of motion; discretization error results basically

from the substitution of a discrete set of points for the space-time continuum.

The errors introduced when axial viscous effects and turbulence phenomena are

neglected are manifested in the accuracy with which separation and vortex

locations can be predicted. Since the determination of the accuracy of the

method is of primary importance, all sources of error will be discussed at

some length.

To deduce the order of error in the equivalence principle assumption,

Van Dyke introduced what he termed "reduced" independent and dependent vari-

ables, and he redefined the functions describing the body and shock-wave sur-

faces. To obtain these reduced variables, consider a coordinate system where

the z axis is alined with free-stream flow direction. Let the surface of

the body be described by B(x, y, z) = 0, and let the complete system of

shock waves be described by S(x, y, z) = 0. In this coordinate system the
reduced variables are as follows:
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= xl_

= yl_

= z

u = u_T[,(_,9,_.) 't

/v U_'rV(_,,7, _.)

w U_[1 + "r2C,(_,_',_)]

(14)

(lS)

(16)

P = P_S(_,?,_) (17)

B = _(_,9,_)I

J (18)
s = g(_,_,_)

where T is the maximum slope of the body surface with respect to the free-
stream flow direction. This transformation of variables was introduced into

the continuity, momentum, and first law equations. Reduced parameters were
considered of order one or less and terms that contained T2 explicitly were

discarded. A set of reduced equations, linear in _ and derivatives with

respect to _, resulted. The boundary conditions for the reduced equations
became:

At the body surface

ag a_ ag
u_+ 9 _-=-+ _=OBy at B = 0 (19)

Far upstream of the body

}P+ _2
yMT

6+1

as _. +-_ (20)

The parameters M_ and x of the full problem enter the reduced problem

only in the combination M_, which appears only in the upstream boundary con-

dition on P (eq. (20)). Since P must be of order one or less for these

equations to be valid, M_T must be of order one or greater for this theory

to be consistent far upstream of the body, If this consistency condition is
satisfied the maximum error in a reduced variable must be of the order x2

, #

because terms of order x2 have been omitted in the reduction. Since M_T is

of order one, an error of order r2 implies that the error is also of order

I/M_ 2, thus the theory becomes more accurate at high Math numbers. At super-

sonic speeds and wfth M_T = 0(i)# this error is not negligible. Maximum errors
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expected from the equivalence principle assumption for static pressure and

local Mach number are derived below.

m

The absolute difference between the actual reduced pressure, Pa, and the

reduced pressure calculated from this theory, P, is

IPa - PI _ 32 {21)

Combining equations (16) and (21) yields

]Pa - PI

2q3

where q_ is the free-stream dynamic pressure ((I/2)p_U_). Therefore, the

absolute error in the pressure is as follows:

Pa - P( _ 2q. 3_ (22)

Since experimental and numerical local Mach numbers are compared in this

research effort, it is important to determine the order of error in the Mach

number. The Mach number M is defined as

M = (u2 + v2 + W2)I/2
C (23)

where C is the local sound speed. From Bernoulli's equation, the local

sound speed can be expressed in terms of the components of local velocity

C2 = C2 y - I (u 2 + v2 + w2 _ U2) (24)
2OO

where C_ is the free-stream sound speed. Introducing the reduced velocities

u, v, and _ from equations (15) into equations (25) and (24) yields the rela-

tion for the Mach number in terms of reduced velocities.

M = (1 + 34W 2 + 2T2W + 32V 2 + 32u2) 1/2 (25)

Since E, V, and _ are of order one, terms in 34 could be neglected in

equation (25).

_)2 _ [(y _ 1)/2]32(2_ + 92 + a2)

(26)

Equation (26) can be linearized in terms of changes in E, 7, and _ by

employing a first-order Taylor's expansion. Let Ma represent the actual

2"/9
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local Mach number and M represent the value computed by this numerical

method. From a first-order Taylor's expansion

Ma_ M + 3(_) A6 + (87) A_ + 8(_-_) A_ (27)
[l=_'=_= I u=v=w=l I]=V:W= I

The coefficients of equation (27) can be determined by differentiation of

equation (26) and evaluation of the derivatives at the values _ = V = _ = i,

since barred quantities are assumed of order one. The final equation is as

follows:

3 [1-
M _ T4oo L L J

i + (y - 1)(1 + 2T2)M 2

1 + 4(y - 1)T2M_[(y - I)T 2 - i]

(28)

where

IAMI: IMa - MI

If the reduced equations are rewritten in terms of the actual unbarred

parameters, and the substitution z = U_t is made, the time-dependent equa-

tions of motion in two space dimensions result.

The discretization error in the above time-dependent equations of

motion in two space dimensions is based on a general rule that relates the

error to the density of mesh points employed in the numerical integration

process. The derivation of this error rule can be found in reference 8; the

relation is as follows:

e = f2N-3/4 (29)

where e is the absolute discretization error in a given property, N is the

two-dimensional mesh point density (i.e., number of zones per unit area of the

x, y plane), and f2 is a bounded oscillatory function. If the same problem

is run with two different meshes, that is, a medium and fine mesh, the function

f2 can be evaluated from the values of a property and mesh point densities of

the medium and fine meshes at the same point in space and time. For the case

where the static pressure error is required,

Pf- Pm (30)

where Pf is the fine mesh pressure, Pm is the medium mesh pressure, Nm is
the mesh point density of the medium mesh, and Nf is the mesh point density
for the fine mesh.

The error introduced by neglecting axial viscous effects and turbulence

phenomena is the most difficult of the three sources of error to evaluate. In

fact, one of the primary objectives of the study was to determine how well the
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flow field could be predicted with axial viscous effects neglected. No attempt

was made to evaluate this error analytically. Instead, numerical results

obtained with this method are compared with experimental data. These compari-

sons are discussed in some detail in succeeding sections concerned with the

numerical results.

In this research effort the effects of mesh point density on the

discretization error were not investigated; each problem of the program was

run with only one mesh. Therefore, the order of error of the numerical

method, which was established by comparing the numerical results with experi-

mental ones, included all three sources of errors.

r

]:-

DESCRIPTION OF PROBLEMS SOLVED AND MESHES USED

The AFTON-2PE computer code, modified to accommodate the equivalence

principle boundary conditions, was applied first to the flow field about an

ogive-cylinder configuration and second to a fuselage geometry representative

of an advanced tactical fighter plane. In both problems, air, represented

as a gamma law gas (y = 1.4), was considered and adiabatic flow was assumed

throughout the flow field. For the ogive-cylinder problem the free-stream

Mach number was 1.98, the angle of attack was 10 ° with respect to the axis

of the body, and the free-stream Reynolds number was 4.68×i06/ft. For the

fuselage problem the free-stream Mach number was 2.5, the angle of attack

was 15 ° with respect to the horizontal, and the free-stream Reynolds number

was 9.1×106/ft. In this section the cross-sectional shapes for both problems

are defined and the finite difference meshes generated about these cross
sections are described.

The axisymmetric ogive-cylinder configuration is composed of an ogive

which is three maximum cylinder diameters long and a cylinder 7.3 diameters

long. This configuration is schematically illustrated in figure 7, where the

equations which describe the variation of the radius of the body with axial

distance are also indicated. In this problem the axis of the body, which is

straight in this case, was chosen as the principal axis for the equivalence

analogy between the steady and unsteady flows.

The fuselage had a drooped nose which resulted in a curved central axis

of the body. This geometry is schematically illustrated in figure 8. The

central axis of the body is composed of a straight portion, inclined 7-1/2 °

from the horizontal, and a curved portion which begins at a horizontal station
of 1S inches (see fig. 8). To avoid introducing curvature effects into the

equations of motion, the 7-1/2 ° reference line was chosen as the principal
axis for the equivalence analogy. In this coordinate system, the angle of

attack of 15 ° with respect to the horizontal becomes 7-1/2 ° with respect to

the 7-1/2 ° reference line; hence a = 7-1/2 ° . The canopy, included in this
problem, is indicated in the cross sections normal to the 7-1/2 ° reference

line shown in figure 8.

The fuselage configuration has cross-sectional shapes normal to the

7-1/2 ° reference axis whose peripheries can be approximated by circular arcs

and straight lines. In fact the fuselage cross section is circular to a
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horizontal station of 9.44 inches from its nose, is asymmetric between

horizontal stations 9.44 and 10.88, and includes a circular canopy between

horizontal stations 10.88 and 30.68. The fuselage cross section at a horizon-

tal station at the canopy location is shown schematically in figure 9. The

parameters describing this periphery are also indicated in the figure. These

parameters have been curve-fitted as functions of distance along the central

axis of the fuselage.

A subroutine of the AFTON 2PE computer code has been developed for

generating finite-difference meshes around an asymmetric half-body of a gen-

eral fuselage-shaped cross section. This subroutine is based on previous work

on finite-difference mesh development for a circular cylinder (ref. I0). The

general cross-sectional shape of the half-body is assumed to consist of two

circular arcs, two straight-line segments tangent to the circular arcs, and a

circular canopy (see fig. 9). The procedure adopted in the calculation was as

follows. The area of the half-body was computed and a half-circle of equiva-

lent area was located with its center at the coordinate origin. The finite-

difference mesh for this half-circle was calculated from a modified stream

function and potential function from potential flow theory about a cylinder.

The problem was to transform the cylinder mesh into a new mesh around the asym-

metric half-body according to some suitable rule of transformation. In the

subroutine developed, each half-circle mesh point (designated hereafter as an

"unprimed" mesh point) was transformed into a half-body mesh point (designated

hereafter as a "primed" mesh point) in the following manner. First, the periph-

ery of the half-body shape was divided into as many equal arcs as the half-

circle periphery. Then, surface vector displacements were obtained between

corresponding unprimed points on the half-circle and primed points on the asym-

metric half-body. Based on these surface vector displacements, unprimed mesh

points in the flow field were displaced to their primed locations. Consider

an unprimed mesh point in the flow field having a position vector R(j, k),

where the integer k is associated with a potential-like line, and the integer

j is associated with a streamline-like line. Let the surface vector displace-

ment corresponding to the same k line be denoted as d(k). The position vec-

tor of the primed point R'(j, k) is determined from the following equation:

[ a ]2R'(j,k) = R(j,k) + d(k) R(j,k)
(31)

where a is the radius of the half-circle and R(j, k) is the magnitude of

the position vector R(j, k).

The finite-difference meshes for the ogive-cylinder were composed of

35 j lines and 90 k lines and continuously deformed with the radius of

the body. The initial radius was 0.00046875 foot and the maximum radius was

0.046875 foot. Since the ogive-cylinder cross section is circular, only the

equations of the mesh generating subroutine which pertained to the circular

cylinder mesh points (unprimed mesh points) were used to continually calculate

new meshes as the radius of the cross section changed. The finite-difference

mesh in a cross-sectional plane normal to the body axis at a radius of 0.01

foot is shown in figure I0. The finite-difference mesh corresponding to the

maximum radius (0.046875 ft) is indicated in figure II.
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The finite-difference meshes for the fuselage configuration were

composed of 35 j lines and 99 k lines and continuously deformed as the

body cross-sectional shape deformed. The mesh generating subroutine of the

AFTON 2PE computer code continually calculated new meshes as the fuselage

shape deformed. The finite-difference mesh in the cross-sectional plane nor-
mal to the central axis at a horizontal station 7 inches from the nose of the

fuselage is shown in figure 12. At this station the fuselage cross section

is circular. The finite-difference mesh corresponding to a horizontal sta-

tion 25 inches from the fuselage nose is shown in figure 13. The canopy is

also indicated in figure 13.

BOUNDARY CONDITIONS AND INITIAL CONDITIONS

In the x, y planes, the finite-difference meshes are bounded by an

upstream boundary, a lateral boundary, and a boundary composed of the symmetry

line of the cross section and the body cross section itself. The density and

specific internal energy are given their free-stream values at the upstream

boundary while the velocity of material normal to this boundary, v , is
evaluated from

v = U sin a (32)

where _ is the angle of attack with respect to the principal axis. Equa-

tions (5) and (6) are satisfied at the body's surface, while the fluid is

allowed to slide without friction at the system's lateral boundary and sym-

metry lines. The downstream boundary condition was based on the method of

characteristics. It was used previously in low-speed wake-flow calculations

and gave a good approximation to the flow in this region. Reference ii

describes this downstream boundary condition in some detail.

The initial condition consisted of a uniform flow field in the x, y

plane with v_ = U_ sin a in which the body impulsively appeared at zero time.

In both problems, the initial cross-sectional radius was approximately 1 per-
cent of the maximum radius.

RESULTS OF OGIVE-CYLINDER PROBLEM

The ogive-cylinder problem was the first attempted in this study, This

problem was a good test of the method in that vortices had been experimentally

observed to occur on the leeward side of the body. The crossflow Mach number

was 0.344 and the crossflow Reynolds number was 0.7625xi05 based on the maxi-

mum diameter of the body. The problem was run 3406 cycles (i.e., time steps)

on the UNIVAC 1108 computer, requiring approximately i0 hours of computer

time. Solutions were obtained from the body's nose to an axial station 8.35

maximum cylinder diameters downstream. At this cross-sectional plane a well-

developed pair of vortices were calculated. The problem duplicated the body

geometry and free-stream conditions of a wind-tunnel test (ref. 12). In gen-

eral, agreement between numerical and experimental data was good, providing

evidence that the numerical method is applicable to bodies for which separa-

tion and the subsequent development of spiral vortex sheets occur.
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To investigate the qualitative behavior of the flow field, it was

convenient to exhibit the data in the form of vector plots of the velocities

of the fluid particles; the tail of each vector corresponds to a mesh point.

The sequence of events as one moves down the axis of the body is described by

figures 14 to 17. In figure 14 the flow field is shown at a station 0.502

maximum cylinder diameters from the nose of the body. Although the finite-

difference mesh is relatively coarse with respect to the radius of the body at

this station, the bow shock is indicated as well as the expansion which occurs

on the leeward side. In figure 15, at a station 2.99 maximum body diameters,

where the ogive section ends, the bow shock is better defined. Figure 16

shows the flow field at a station of 4.92 maximum diameters, where separation

first appears on the leeward side of the body. The spiral vortex sheets that

develop on the leeward side of the body are indicated in figure 17. The for-

mation of the bow shock, the leeward expansion, and subsequent development of

the spiral vortex sheets are all in qualitative accord with experimental

observations. The accuracy of these numerical results is considered below.

Numerical pressure distributions around the body are compared to

experimental data at various axial stations in figure 18. As can be seen from

the figure, quantitative agreement is achieved from the body nose to an axial
station 4.92 diameters. At this station the numerical data indicate that

separation had occurred on the leeward side of the body (see the velocity

vector plot in fig. 16), whereas the experimental data showed leeward separa-

tion at a station approximately 6.00 diameters aft of the body's nose. As a

result, the numerical pressure data on the leeward side of the body differed

slightly from the experimental data between stations 4.92 and 6.00 diameters

down the body axis. At stations greater than 6.00 diameters from the

cylinder's nose, the experimental data also showed separated flow, and the

numerical and experimental pressure coefficient data were in close agreement

7.63 diameters from the nose of the cylinder.

The circumferential positions of the separation points and vortex

centers vary with axial location in a manner determined experimentally by

measurements of pitot pressure at various body cross sections. Corresponding

separation point and vortex center positions were also found from velocity

plots of the numerical flow field. The calculated separation points and vor-
tex centers were found to lie about 20 ° closer to the windward side than the

corresponding experimental values as seen in figure 19. For example, in a

crossflow plane 8.3 diameters down the body axis, the numerical separation

point and vortex location were 109 ° and 137 ° , respectively, while the corre-

sponding experimental values were 130 ° and 160 °. The discrepancF between

measured and calculated separation point and vortex center positions, while

not very large, is perhaps the least satisfactory feature of the calculation.

The difference is due to viscous effects of axial motion being neglected as

well as to the exclusion of turbulence phenomena.

The flow field predicted numerically is laminar. However, the actual

flow field is turbulent as a result of both axial and crossflow viscous

effects. In the numerical method axial motion is treated as if the flow were

inviscid. For laminar flow, separation would begin on the leeward side of

the body at an axial station upstream of the station at which turbulent sepa-

ration begins. Also, the separation point would be closer to the windward
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side when the flow is laminar. From the pressure coefficient data for a cir-

cular cylinder (ref. 13), it was found that in turbulent flow at a Reynolds

number of 6.7xi05, separation occurred at 120°; in laminar flow at a Reynolds

number of 1.85×10 5, separation occurred at 90 ° . Thus, the difference between

the numerical and experimental separation positions is in qualitative agree-

ment with the difference between laminar and turbulent separation positions.

To obtain more realistic theoretical predictions, it will therefore be neces-

sary to generalize the equivalence principle account for turbulent effects

due to axial flow; it is felt that the principle, which was generalized for

this program by including Newtonian viscosity in the crossflow equations,

could be extended satisfactorily by the addition of eddy viscosity terms.

Based on the equivalence principle theory, an error analysis of the

surface pressure results of figure 18 was made. The maximum slope of the

ogive-cylinder body with respect to the free-stream flow direction was 28.92 °

which corresponds to a T = 0.552, and occurs on the windward side of the body

at the nose. For this value of T the hypersonic similarity parameter M_T

is 1.09, which satisfies the consistency condition of the theory. Since con-

sistency is satisfied, the maximum absolute error in the surface static pres-

sures, IAPI, that one should expect from this theory is about 19 percent of

the free-stream dynamic pressure (see eq. (21)). The maximum absolute error

in surface static pressure, or maximum difference between numerical and

experimental pressures, for each of the cross sections of figure 18:-is pre-

sented in table i. Table 1 shows that the errors are very much less than the

maximum error calculated from the equivalence principle theory of Van Dyke.

It is believed that the static pressure errors in the vicinity of the body's

nose would be of the order of 19 percent and would decay rapidly as T

decreased. For example, at the station 0.502 diameter, the parameter • is

0.481, which results in a predicted absolute maximum error of ii percent of

free-stream dynamic pressure. Therefore, the numerical results are consistent

with the equivalence principle theory of Van Dyke.

TABLE I.- MAXIMUM SURFACE PRESSURE ERROR IN VARIOUS CROSS-SECTIONAL PLANES

Axial station, IApI/q '
maximum cylinder diameter percent

0.502

2.990

1. 289

3.970

4.920

5.830

7.630

Drag and lift coefficients were determined on the basis of numerical

pressure data only; shear stress effects were not included. To compute these

coefficients, the pressure coefficients on the ogive-cylinder surface were

numerically integrated to determine the lift and drag. Comparison of the

numerical and experimental coefficients, as shown in figure 20, was found to

be very satisfactory. The coefficients of total drag from the two sources

proved to be almost identical functions of distance from the nose of the

ogive. Differences in the lift coefficient curves began to be significant at
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a distance of about 2.75 diameters from the nose of the ogive, increased to a

maximum at about 4.5 diameters, and then decreased; the numerical lift coef-

ficient was approximately 5.8 percent higher than that measured at about 4.5

diameters from the ogive nose, and about 2 percent higher at 8.35 diameters

from the nose.

An overestimated lift coefficient is consistent with the fact that

separation occurred earlier in the numerical flow field than in the experimen-

tal field. Lift coefficients are calculated from pressure forces on the sur-

face of the body, as projected in a plane parallel to that of free-stream

flow. Since the area of the appropriate projection is almost entirely derived

from the body's long cylindrical surface, and separation takes place on that

surface, separation that occurs too early increases the lift.

On the other hand, the drag coefficient should be relatively independent

of the location of separation. Since the ogive becomes cylindrical at a

station 3.0 diameters from its nose, the projected surface area normal to the

direction of free-stream flow is very small for the long cylindrical surface

aft of this station, and the corresponding pressure forces contribute very

little to the total drag. Quantitative agreement in the pressure drag

coefficients is therefore physically reasonable.

RESULTS OF FUSELAGE PROBLEM

For the fuselage problem the crossflow Mach number was 0.288 and the

crossflow Reynolds number was 1.15×106/ft. Cross-section flows have been

calculated in this problem in planes normal to the 7-i/2 ° reference line to

a horizontal station 19.5 inches aft of the nose. At this station the curve

bounding the body's surface represents an asymmetric fuselage configuration

with a canopy. To reach this station the problem was run 2079 cycles (time

steps) on the UNIVAC 1108 computer. This calculation required approximately

6 hours of computer time.

From velocity vector plots of the cross-sectional flow field, the

qualitative behavior of the fuselage flow can be examined. The sequence of

events as one moves downstream along the central axis of the fuselage is indi-

cated in figures 21 to 25. The vectors in these figures correspond to the

particle velocities of the flow at each mesh point of the finite difference

mesh; the tail of each vector corresponds to the mesh point. Initially, a

bow shock forms at the nose and an expansion fan, caused by the interaction

between the expanding body and the crossflow, appears on the leeward side.

This is indicated in figure 21 at a station 1.135 inches from the fuselage

nose. This flow pattern continues as the fuselage cross section grows until

it reaches the canopy which induces a shock wave in the flow field (see fig.

23). As the canopy radius reaches maximum (fig. 24) and starts to decrease,

a rarefaction develops in the flow field above the canopy, leading to the

formation of vortices (fig. 25).

The quantitative behavior of the predicted flow about the fuselage was

ascertained by comparing the numerical results to experimental measurements.
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The fuselage configuration of figure 6 was tested in the Ames 8- by 7-Foot

Wind Tunnel. Static pressures were measured along the surface of the fuselage,

and flow-field measurements with conical probes were made in cross-sectional

planes normal to the horizontal reference line at a station 19.5 inches aft of

the fuselage nose. The static-pressure instrumentation of the fuselage fore-

body surface is sketched in figure 26. The pressure taps were located in

cross-sectional planes normal to the horizontal reference line. The point of

intersection of the 7-1/2 ° reference line with this cross-sectional plane

defined the axis from which pressure tap locations were measured along the

periphery of the cross section. Pressure taps were located -90°_ -60 °, -30 ° ,

0°, and +24 ° from this axis (see fig. 26). Thus, with respect to stations

along the horizontal reference line, the instrumentation was located along the

five planes indicated in figure 26.

Numerical and experimental distributions of surface pressure coefficients

are compared in figure 27 along the five planes of figure 26. It is seen that

excellent agreement has been achieved along the -90 ° , -60 ° , and -30 ° planes.

The numerical and experimental pressure coefficients agree along the 0 ° plane

until station 18. Along the 24 ° plane there is a discrepancy at station 15.

These discrepancies can be attributed to two sources: (a) a canopy shock

wave-axial boundary-layer interaction, which occurs experimentally but not

numerically, and (b) a slightly different calculated canopy shock location

which will be described in more detail in the discussion of the flow-field

results. The canopy shock-axial boundary-layer interaction spreads the shock

pressure rise over a greater distance than calculated.

As in the case of the ogive-cylinder problem, an error analysis was made

of the surface static pressures. The maximum slope of the fuselage geometry

with respect to the free-stream flow occurred on the windward side of the body

at its nose (see fig. 8). Its value was 22 ° , which corresponds to • = 0.400

and M_T = 0.998. Therefore, the consistency condition of the theory is satis-

fied. According to equation (22), the maximum absolute error then becomes

5 percent of the free-stream dynamic pressure. On the basis of the results

of figure 27, the maximum error, IAP[/q_, in each of the planes was determined

and the values are tabulated in table 2. It is seen from the table that the

errors recorded are consistent with the maximum error calculated from the

equivalence principle theory.

TABLE 2.- MAXIMUM SURFACE PRESSURE ERROR ALONG TIIE FIVE PLANES OF FIGURE 33

Plane, deg IAPI/q_, percent

-90

-60

-30

0

24

2.0

2.3

3.4

5.6

5.8

At first glance, the relatively small errors of table 2 are surprising

since the hypersonic equivalence principle is applied at supersonic speeds.

One would expect only linearized supersonic theory to apply in this Mach num-

ber range. However, an analysis of the errors shows that linearized supersonic

theory is only slightly more accurate for this fuselage. The error in
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linearized supersonic theory is of order T which results in a maxim_n error

in static pressure of 4 percent of free-stream dynamic pressure. Thus, for a

body with maximum slope, _, great enough such that M_T = 0(I), both the hyper-

sonic equivalence principle and linearized supersonic theory give satisfactory

results at supersonic speeds for M > 2.

Contour plots of the local pitot pressure ratio (Pp/Ps_), local sideslip

angle (B), local Mach number (M), local angle of attack (_e), and local total

pressure ratio (Ps/Ps_) were generated from the numerical results and compared

to corresponding contour plots from experimental data. The comparisons were

made in a cross-sectional plane normal to the horizontal reference line at a

station 19.5 inches from the fuselage apex. See figures 28 through 32.

The local pitot pressure, Pp, is effectively the stagnation pressure
measured by a probe whose axis is parallel to the local flow direction, As in

the case of the surface pressures the pitot pressure is measured directly;

therefore, it provides a reliable measurement for comparison. The numerical

pitot pressure was calculated from the Rankine-Hugoniot equations for a normal

shock, where upstream of the shock the local Mach number and stagnation pres-

sure were assumed to exist. The numerical and experimental pitot pressure

ratios (Pp/Ps_) of figure 28 indicate good agreement in the lower quadrant of

the flow field, where the two sets of P_/Ps contours are nearly coincident
_ . • •

in the vicinity of the body. This quantitative agreement is in accord with

the agreement obtained between surface static pressures on the -30 ° plane,

which intersects the body in this region. In the upper quadrant of the flow

field there is a discrepancy between the experimental and numerical contours.

The numerical results indicate that the canopy shock intersects the fuselage

surface above that point indicated by the experimental data. The increased

downward distance of travel by the canopy shock in the experimental case

accounts for the discrepancy in contours in the upper quadrant of the flow

field. Although axial boundary-layer effects and discretization errors influ-

ence the canopy shock location, it is believed the equivalence principle

approximation of neglecting the axial perturbation velocity is the primary

cause of this discrepancy. The axial perturbation velocity is zero upstream

of the body apex; thus the bow shock and windward flow field were calculated

correctly. However, these perturbation velocities do exist in the vicinity of

the canopy. The canopy shock is thus predicted imbedded in a flow field dif-

fering from the actual situation, and consequently, the location and strength

of the canopy shock do not agree with experimental data.

The local sideslip angle, B, is measured in the cross-sectional plane

normal to the horizontal reference line and is the flow inclination in the

x', z' plane (see fig. 9). As in the case of the pitot pressures, the com-

parison of the experimental and numerical sideslip angle contours shown in

figure 29 indicates that the predicted flow field in the lower quadrant is

nearly correct. Furthermore, the predicted location of the canopy shock and

the predicted flow-field contours in the upper quadrant deviate from experiment

as in the pitot pressure comparisons.

Contours of constant Mach number and constant local angle of attack with

respect to the horizontal reference line (see fig. 8) are presented in figures
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30 and 31, respectively. It is seen from these figures that the numerical

Mach number and angle-of-attack contours do not match the experimental contours

even in the lower quadrant of the flow field. This discrepancy is not in

accord with the surface static pressure comparison, pitot pressure comparison,

and sideslip angle comparison discussed previously.

The reasons for this disagreement can be found in discretization errors

in the numerical method, errors introduced by the equivalence principle

assumption, and errors inherent in the experiment and data reduction process.

The error in Mach number due to the equivalence principle has been determined

previously (see eq. (28)). Equation (28), evaluated with _ = 0.40 and
M_ = 2.5, results in an absolute error of about 0.7 percent of the free-stream

Mach number. This corresponds to an absolute Mach number error of about 0.02.

Consider the experimental contour of figure 30 for a constant Mach number of

2.50. It is seen from figure 30 that this contour coincides with the numeri-
cal contour for a constant Mach number of 2.40, which results in an absolute

Mach number difference of 0.i0. Thus, the observed absolute difference in

Mach number between the numerical and experimental results is five times the

maximum error one would expect from the equivalence principle alone. Also,

it is well known that Mach number and angle of attack are much more difficult

to measure accurately than surface static pressures and pitot pressures.
Therefore, one must conclude that the experiment and data reduction process

are, at least in part, responsible for these discrepancies.

The calculated local total pressure recovery contours (Ps/Ps_) are

shown in figure 32. The predicted total pressure recovery varies from 1.0
to 0.88 in the flow field, with recoveries near 1.0 throughout most of the

flow region. This parameter is the most difficult to calculate accurately

and to determine experimentally. Although the experimental data for this

fuselage configuration are still preliminary, an error analysis indicates

that the values of Ps/Ps_ can be determined only within ±0.03. For a total

pressure ratio bandwidth from 0.88 to 1.0, this error is too large to yield
any significant contour data. Consequently, no experimental data are shown.

Future refinement of the set of conical probe calibration data will hopefully

reduce this error to a more meaningful level.

Numerical lift and drag coefficients for the fuselage problem are
compared to corresponding lift and drag coefficients determined from inviscid,

linearized supersonic theory for flow about an axisymmetric slender body at

angle of attack (ref. 14). Linearized supersonic slender body theory was used

because there were not enough pressure data to determine the lift and drag

experimentally. The lift and drag coefficients from the numerical method were

detelnnined by numerical integration of the surface pressure coefficients over

the surface and are based on a cross-sectional area corresponding to the maxi-

mum equivalent radius of the fuselage, amax = 3 inches. As in the case of the

ogive-cylinder problem, shear stress effects were not included. It is seen
from figure 33 that the numerical drag coefficient distribution shows greater

drag than the distribution from theory, due in part to the slenderness assump-

tion of the theory. On the other hand, the numerical lift coefficient distri-

bution nearly corresponds to that of linearized supersonic theory. This

comparison does indicate that the lift and drag coefficients calculated by the

numerical method of this paper, if not correct, are at least of the right order.
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CONCLUSIONS

A numerical method has been developed for calculating three-dimensional

flow fields about slender bodies at supersonic speeds. The primary advantage

of the method is that detailed predictions may be obtained for realistic fuse-

lage configurations at angle of attack. Secondly, boundary-layer separation

and development of spiral vortex sheets are predicted by the method. Major

sources of error in the method are neglect of the axial perturbation velocity,

neglect of axial viscous effects, and exclusion of any turbulence phenomena.

The method can adequately predict the surface pressures and flow-field

characteristics outside the boundary layer for bodies where the hypersonic

similarity parameter, M_T, is unity or greater and for free-stream Mach numbers

of 2 and above. For the ogive-cylinder and fuselage problems, the surface

static pressure distributions differed from corresponding experimental values

by no more than 6 percent of the free-stream dynamic pressure. These devia-

tions are contained within the predicted error bounds of the equivalence prin-

ciple. From velocity vector plots and contour plots, the structure of the

calculated flow field appeared correct, at least qualitatively. Contour plots

of pitot pressures were of the same general shape as the experimental contours

for the fuselage configuration, and good quantitative agreement was obtained

in the lower quadrant of the flow field. Since the error inherent in the

equivalence principle becomes smaller as the Mach number is increased and with

the condition M_T = 0(i) maintained, the accuracy of the numerical method will

improve at higher Mach numbers. Additional comparisons between numerical

results and experiment at higher Mach numbers would be desirable, however, to

strengthen this conclusion.

The positions of boundary-layer separation points and vortex centers were

not accurately predicted by the numerical method. Neglect of axial viscous

effects and exclusion of any turbulence phenomena_ which were observed experi-

mentally, are considered responsible for these inaccuracies in the computed

results. From the two problems which were run, it was not possible to deter-

mine the relative effects of viscosity in the axial and crossflow directions or

to determine to what extent exclusion of turbulence affected the numerical

results. Solution of another problem duplicating the body geometry and flight

conditions of an experimental test at hypersonic speed and in the laminar flow

regime would provide more understanding of the relationship between axial and

crossflow viscous effects. At this flight condition differences between numer-

ical and experimental results are attributable predominantly to neglect of

axial viscous effects since errors in the equivalence principle are minimized
and turbulence is not a consideration.
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APPENDIX A

F

THE EQUIVALENCE PRINCIPLE

In this section the equivalence principle for steady, inviscid three-

dimensional flow is derived. An Eulerian coordinate system fixed with respect

to the body and having its z axis along the axis of the body is used

throughout this section (see fig. 2).

The equations of motion for steady, inviscid three-dimensional flow about

a body are:

Continuity

Momentum

fAI)

_u _u 3u 1 DP (A2a)
uT_ + v T_ + (w + u cos a) Tf = _ Dx

_v 3v Dv 1 _P (A2b)
u %-f+ v Tf + (w + U® cos a) Tf = _ Dy

IF

3w Dw 3w 1 3P (A2c)
u _+ vTf+ (w + U cos a) Tf= p Dz

First law

DE DE DE _pr D 1 D 1
u_+vTf+ (w+uocosa) T£: LuT_+vD---f_ + (w + uooc°s_) 7z_]

Boundary conditions at body
(A3)

(U cos a + w)£ z + v£ Y

Boundary conditions at shock

+ uZ = 0 (A4a)
X

O U (cos an z + sin any) = Os[(U = cos a + Ws)n z + Vsny + usnx] (A4b)

P=,, + p U2(cos an z + sin any) 2 = Ps + Ps[(U_ cos a + ws)n z + Vsny + Usnx] 2

(A4c)
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Ih-A 

Y_ Poo + 1 U_(cos _n z + sin eny) 2
V i 0_

P
_ y s+ I

¥ - i 0s _ [(u°°cos _ + Ws)nz + Vsny + Usnx] 2
(A4d)

where E is the internal energy per unit mass, P is the pressure, 0 is the

density, U_ is the free-stream speed, w is perturbation velocity in the z
direction, v is the velocity in the y direction, u is the velocity in the

x direction, and _x, Zy, and _z are the direction cosines of the body nor-
mal in the x, y, and z directions, respectively. The subscript s refers

to properties downstream of the shock, and nx, nx, n z are the direction
cosines of the shock normal in the x, y, and z directions, respectively.

Boundary conditions far from body

z : -® " w : 0 , v : U® sin a , u = 0 (A4e)

Introducing the transformation equations

Z = Uoo cos _t)

y=y

X=X

(AS)

and the slender body assumption

U >> W

into equations (AI) through (A4) yields

Continuity

+ 5-_x(pu) +g7 Coy) = o (A6)

r

.v

t'

Momentum

_w _w _w 1 _P i (A7a)
_+ U + V _=
_t _-x _Y p _t U cos a

_v _v _v i _P (A7b)
_+ U + V _=
_t _ _y o _Y

_u Du 3u 1 DP (A7c)
D-V+ v 2-7=
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First law

_E + u + v--= -P + u_-+ v_-__W _f _y
{A8)

Boundary conditions at body

cos _U_Zz + uZ x + V%y = 0 [_A9a)

Boundary conditions at shock

P
O0

y O0

y- Ip_

p U (-cos _ sin 8 + sin _ cos 8) = Ps{Vsny + Usn x - U cos _ sin 8)

(A9b)

+ p U (-cos _ sin g + sin a cos g) 2 = Ps + Ps(Vsny + Usnx - U cos a sin 8)2

(A9c)

P U (-cos _ sin 8 + sin _ cos g)2

+
2

Y- lOs
+ (Vsny + Usn x - U=o cos _ sin 8) 2 (A9d)

where 8 is the angle made by the shock surface with respect to the z axis

in the y, z plane. Equations (A6), (ATb), (ATc), and (AS) are independent

of w and, thus, represent the equations for time-dependent motion in the

x, y plane. Therefore, the steady 3-D equations of motion have been trans-

formed to a time-dependent 2-D set of equations. The 3-D shock boundary con-

ditions also reduce to a nonsteady shock in the x, y plane moving with

velocity proportional to U_ cos _ sin _. In summary, the necessary and suf-

ficient conditions for the equivalence principle to be valid are:

I. The z component of the local velocity vector must be approximately

equal to the z component of the free-stream velocity vector, and

o The time-dependent solution in the x, y plane must satisfy the

three-dimensional boundary condition equation (Aga) at the body
surface.

The calculational procedure for inviscid flow is then as follows:

First, equations (A6), (A7b), (A7c), (A8), and (A9a) are solved for v, u, P,

and p. The perturbation velocity w may be subsequently obtained from the

Bernoulli equation, which is

Y p (w + U COS (_)2 + V 2 + U 2

+ = constant (AIO)
y- 1 p 2

Therefore, the equivalence between a steady three-dimensional flow and a

time-dependent two-dimensional flow is proven.
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If the conditions (I), (2) are satisfied, viscous effects can be

included in the time-dependent calculations in the x, y plane without vio-

lating the equivalence principle assumptions. A no-slip boundary condition

can be applied at the surface of the cross section in the x, y plane in

conjunction with the equivalence principle boundary condition equation (A9a).
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APPENDIX B

CONSERVATION OF TOTAL ENERGY

In this section the self-consistency property of form that the finite

difference equations (8) to (13) possess is demonstrated. This demonstration

proceeds in three steps. First, the finite difference kinetic energy equation

is derived for the momentum zone a£_(i/2), a£+(I/2 ). Then the finite differ-

ence first law equation is derived for this momentum zone. Finally, these

relations are added to determine the finite difference equation of total

energy for the momentum zone a£_ I, a£_(i/2 ) .

The kinetic energy equation for momentum zone a£_(i/2), a%+(i/2 ) can

be derived from momentum equation (12) which is centered at the time

tn-(1/2) Equation (12) can be written in terms of velocities by employing

the forward extrapolation relation, equation (13):

U_+(I/2)- n-[3/2) [ ](1/2) _ pn-(1/2) (B1)12 m£ At U£ : P_-(I/2) £+(1/2)

n-(I/2) yields the kinetic energy equation forMultiplying equation (BI) by U_

momentum zone a£_(i/2), a£+(i/2 ).

m£ IU_+ (I/2)U_" (I/2) n- (I/2) U_- (8/2)_I [
n-(112) (I/2) Dn- (112)]

A-T 2 2 = U_ (1/2) - -£+ (I/2)J

(B2)

The first law equation for momentum zone a__(i/2), aE+(i/2 ) is derived

as follows: the internal energy for this zone equals half the sum of the

internal energies of thermodynamic zones a£_l, a£ and a£, a£+ 1 (see eqs.

(9) and (10)). This division of internal energy comes directly from the

relationship between thermodynamic and momentum zones specified when the

physical model of figure 6 was postulated. The -P(&v/At) term for momentum

zone a£_(I/2), a£+(i/2 ) comes from half the -P(&v/&t) for thermodynamic

zones a£_l, a£ and a£, a£+ I. The first law equation for momentum zone

a£_(i/2 ), a£+(i/2 ) becomes:
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m_ At

_pn-I n

1 / £-(1/2)+ P£-(1/2)[U7-(1/2 )
=-: 2

,n-(I/2)]
- u__ 1 ]

+

pn- 1 n

n- (I/2)]I (B3)
U£

The finite difference equation for conservation of total energy for

momentum zone a£_
and (B3). (I/2)' a£+(i/2) results from the addition of equations (B2)

n n-I

H£ - H£ [W_£ (I/2) n-(I/2)1m£ At = : (1/2) - W£_ (I/2)J (B4)

where

n-(z /2)

n = lET_ + En 1 U£ /2)U7+(IH% (I/2) £+(I/2)] 2-+ 2

n n-I n_,(1/2) + U7-_1/2)n- (1/2) P£- (I/2) + Pg,,- (1/2) U£

W£_ (1/2) = 2 2

WT; Cl/_')pn n-I
tl/ ) = 2 2

Equation (B4), derived from finite difference analogs of the first law

and momentum equations, is a reasonable finite difference expression for

total energy conservation. The rate of work done on the surface, having the

Lagrangian coordinate a£_(i/2 ) at time tn-(I/2), is the product of the

time-averaged pressure in the thermodynamic zone az_ I, az and the space-

averaged velocity between surfaces a_ I and a£. The internal energy of the

momentum zone a£_(i/2), a£+(i/2 ) at _ime tn, is half the internal energy

of the two thermodynamic zones that contain it. Finally, the kinetic energy
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of momentum zone a£_(i/2), a£+(i/2 ) at time tn, is the product of the

velocities at the surface a£, at times tn-(I/2) and tn+(I/2) It is

believed that this self-consistency of form property, which the differential

equations possess, and which the finite equations preserve, is the primary
reason for their success in numerical calculation of one-dimensional time-

dependent flow fields.
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FLOW FIELD IN FUSELAGE CROSS SECTION PLANE

Figure 1
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FLOW FIELD ABOUT AN AXISYMMETRIC BODY

AT ANGLE OF ATTACK

Figure 3
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ONE-DIMENSIONAL, TIME-DEPENDENT MOTION

IN LAGRANGIAN COORDINATES

PARTICLE TRAJECTORIES IN A
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/

im

al a2

EULERIAN COORDINATE, x(a, t)

THERMODYNAMIC AND MOMENTUM ZONES FOR

ONE-DIMENSIONAL TIME-DEPENDENT MOTION

I' '
THERMODYNAMICTHERMODYNAMIC

ZONE ZONE
I 1

_._ [ MOMENTUM I
I ZONE I

I I I

x x (aH, t) x (oz, t) x (at+l, t)

Figure 5

SCHEMATIC DIAGRAM OF A FINITE DIFFERENCE MESH

3 _ 4 4_ 5
I
I

QUADRILATERAL
ZONE

t
°t

I
I
I
r

I
1
I
I

[
d

QUADRILATERAL
ZONE

QUADRILATERAL
ZONE

e b

]
I

MOMENTUM ZONE I
I

I _b

I-

C_ C

QUADRILATERAL
ZONE

9 8 8 7 7

Figure 6

301



OGIVE-CYLINDER BODY GEOMETRY
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SCHEMATIC OF FUSELAGE CONFIGURATION
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Figure $
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DEFINITION OF FUSELAGE CROSS-SECTIONAL PARAMETERS
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FINITE DIFFERENCE MESH FOR OGIVE-CYLINDER
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Figure 11
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Figure 12
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F|NITE DIFFERENCE MESH AT STA 25.0

CROSS FLOW

Figure13
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Figure 14
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VELOCITY VECTOR PLOT OF FLOW FIELD
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Figure 1.5

VELOCITY VECTOR PLOT OF FLOW FIELD
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Figure16
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VELOCITY VECTOR PLOT OF FLOW FIELD
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Figure [1
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TRAJECTORIES OF SEPARATION AND VORTEX CENTER POINTS
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VELOCITY VECTOR PLOT AT STA 1.135

Figure 21

VELOCITY VECTOR PLOT AT STA IO.O

Figure 22
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VELOCITY VECTOR PLOT AT STA 12.0

Figure23

VELOCITY VECTOR PLOT AT STA 17.0

Figure 24



VELOCITYVECTORPLOTATSTA19.6

Figure25
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COMPARISON OF NUMERICAL AND EXPERIMENTAL
SURFACE PRESSURES
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COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENT
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Figure 29
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COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENT
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LIFT AND DRAG COEFFICIENT DISTRIBUTIONS
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DISCUSSION

JAN RAAT, General Dynamics/Convair: Assuming that computing costs can

be kept within reasonable limits - which is perhaps a bit optimistic at this

time - numerical attacks on the hypersonic small-disturbance equations may

hold some promise for unsteady flow fields, that is, flow problems in which

the given body shape carries out a time-dependent motion. The equivalence

principle holds true for unsteady flow. In that case one might consider a

series of "planes of unsteady analogy" that follow each other at discrete time

intervals.

WALLACE D. HAYES, Princeton University: I find myself in the somewhat

peculiar position of trying to put down the equivalence principle, so I think

a couple of remarks on what I think the proper role of the equivalence

principle is are in order.

The equivalence principle was established primarily to establish a

similitude, and as with most similitudes, the principal value is conceptual.

It leads to an intuition and an understanding of the problem.

I believe that this type of approach to the problem of calculating

supersonic flows is sound, and the way the equivalence principle fits in is

that it will lead you to this particular approach.

The way the equivalence principle then ought to be applied is that it

should be used strictly in the equations in the process of testing out numeri-

cal schemes to find out what will not work, what will work, what works very

well. But when you actually set up a computational scheme for actual computa-

tions you should use the exact equations. They are not appreciably more com-

plicated than the time-varying equations from the equivalence principle and

you are not trying to establish a similitude. In considering x as though

it were a time you are already using whatever you have acquired from the

equivalence principle as leading to understanding.

WALITT: I wonder if Dr. Trulio would like to make a comment about that?

JOHN TRULIO, Applied Theory, Inc.: We used the equivalence principle in

this way because to calculate three-dimensional flow directly would lead us to

a very difficult implicit numerical problem. Here we are approximating (and

making some error in the process) the exact statement of the problem that you

feel we really should address. I think in the end the justification (for our

procedure) has to lie in the comparison between actual data and the computed
solution.

I would prefer myself to work toward the goal of transient three-

dimensional numerical schemes (and we are) which make no approximation other

than discretization assumptions, and which hopefully can be shown to lead to

vanishing error to the limit of finer and finer meshes.

The work reported here is, in a sense, a digression from the main path

we have followed, but I think it may be a useful one.
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LARS E. ERICSSON, Lockheed Missiles and Space Co.: I think that when

you try to expand this to the unsteady case you have to be very cautious.

You have to make sure that you include the actual viscous flow effects, the

boundary-layer collection on the leeward side with associated separation and

free-body-vortex generation. I think some results obtained here at Ames by

Tobak, Peterson, and others show, for instance, that at high angles of attack

you can have free-body vortices on cone cylinder bodies, where the complete

effect induced downstream by those vortices is determined by the relative

crosswind at the conical nose section.

WALITT: I don't know what effect the crossflow at the nose section has

on the lee vortices. However, when we start a problem, the calculations in

the vicinity of the body nose are quite inaccurate, simply because we cannot

afford to make the zoning fine enough at the nose of the body. Due to this

coarse zoning, we have recorded oscillations in properties, such as the pres-

sure, at the body nose. However, the oscillations dampen out and the answer

approaches the correct answer at a station within a half diameter of the

body's nose.

UNIDENTIFIED MEMBER FROM THE FLOOR: You have no way of including the

effects of axial flow?

WALITT: Not exactly. However, we could include the turbulence effect.

For example, in the ogive-cylinder problem, we did calculate flow separation

and vortex formation. However, the separation point occurred about a diameter

upstream from where the experimental separation point occurred. This devia-

tion was a result of axial viscous effects and turbulence. The crossflow

Reynolds number in the plane of calculation was laminar, whereas the actual

axial Reynolds number was probably turbulent.

We believe we could, in a very empirical way, account for the axial

turbulence effect. This can be done by adding crossflow eddy terms to the

equations of motion. However, the effects of the axial viscous terms in the

equations of motion would be more difficult to include.

JACK N. NIELSEN, Nielsen Engineering and Research, Inc.: I was

wondering, were these data on the ogive-cylinder the Jorgensen and Perkins

data?

WALITT: Yes.

NIELSEN: I know that they measured the position of the vortex core with

the aid of the vapor stream technique and pitot tubes. Did you compare your

vortex position with these experimental ones?

WALITT: Yes.

NIELSEN: Were they in good agreement?

WALITT: No. At each sectional plane, the centers of the numerically

calculated vortices were about 20 ° closer to the windward side of the body

than the centers of the experimentally determined vortices. The separation
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also occurred earlier in the numerical calculations. The axial viscous

terms and turbulence, which were not included in this method, account for this

discrepancy. As I said before, both effects can be included in this method.

NIELSEN: Another comment, too. It seems to me that insofar as you are

not getting separation, the question on the equivalence, whether the equiva-

lence is applicable or not is exactly the same question as of whether the body

is slender, in the sense of slender-body theory. Considering the body and the

Mach number, it doesn't look like it is too slender, and therefore some of the

points you made about that equivalence rule being applicable or not might be
questionable.

WALITT: The deviations between the numerical and experimental data did

conform to the maximum error predicted by Van Dyke for the equivalence princi-

ple at these flight conditions and for this geometry.

NIELSEN: Did he do it for viscous or inviscid?

WALITT: Inviscid, in the NACA paper he presented in 1954. However, it

is possible to include crossflow viscous effects without violating any of the
conditions of equivalence.

WILLIAM J. EVANS, Grumman Aircraft Engineering Corp.: For one thing, I

notice that your pressure data does not go up over the canopy. Did you take
data in that region?

WALITT: Yes, we have numerical data all over. The problem was the

wind-tunnel test. They obtained data only on the five planes which I referred

to in my talk. I would like to see another experiment run in conjunction with

another numerical calculation. The experiment should he specifically designed
for the numerical calculation, so that we could make a better evaluation of
the numerical results.

ROBERT E. MELNIK, Grumman Aircraft Engineering Corp.: This question is

directed more to Wally Hayes. I don't think anyone said, but I think the

equivalence principle is basically a hypersonic thing. You are neglecting

the streamwise perturbation and velocity. You can do this in the inviscid

part of the flow field if the disturbances are small and the Mach number is

high, and you can't do it at the boundary layer, so that for the Mach numbers

you are doing it at, I think Wally was saying that it really doesn't apply
to this case except in conceptual terms.

WALLACE D. HAYES, Princeton University: It applies only inviscidly.

MELNIK: Well, he made his calculations for Mach 2.5.

WALITT: The Mach number is important, but so is the hypersonic

similarity parameter, M=T, which in this case turned out to be 0.998. Van

Dyke's theory predicts that the maximum error in a property is proportional

to T2, where T is the maximum slope of the body with respect to the free-

stream flow direction. Since MT is of the order one, the error is of the
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order M -2 For this case the maximum static pressure error was 5 percent

of the f_ee-stream dynamic pressure. The static pressure errors we recorded

were about 2 percent of free-stream dynamic pressure.

MELNIK: What you are saying is that hypersonic small disturbance

theories apply to 15° angle of attack at Mach number 2.5.

WALITT: For this particular body and at this angle of attack it applies.

The only way you can prove that is to measure the maximum slope of the body

and determine the errors. For relatively thick bodies in the supersonic

flight regime, the theory applies.

ELY S. LEVINSKY, Air Vehicle Corp.: First I would like to know if there

is a viscous equivalence principle.

WALITT: No, not that I know of. What we have effectively done is

included viscous crossflow effects without violating the equivalence principle

theory.

LEVINSKY: If you were to continue this calculation downstream on your

ogive-cylinder, would you find a change in the position of the vortex?

WALITT: Yes, it starts and the vortex center grows with distance --

LEVINSKY: And the boundary layer would be ageing somehow?

WALITT: Yes, the crossflow boundary layer would change.

LEVINSKY: Well, you probably haven't done this, but it would be of
interest to look at these boundary-layer calculations that you make, say, for

a cone, and compare with available solutions, for instance that by F. Moore

for a cone, which is a three-dimensional boundary-layer calculation.

WALITT: We would have to redo the boundary-layer calculation. In other

words, this method gives the pressures on the body and the flow field away
from the body outside the boundary layer. In the area of the body itself,
the calculations are not correct because axial effects are excluded. But you

could take the calculated pressures and go back into a three-dimensional
boundary-layer program and estimate what the boundary layer would be like as

a second step.

LEVINSKY: I am trying to get at how we evaluate the separation point
that you predict and the formation of the vortices.

WALITT: The extent to which the viscous crossflow determines separation

determines the accuracy with which we can predict separation.

The only case tried was the ogive-cylinder body, and we predicted separa-
tion 1 diameter upstream of where it actually occurred. Now, both axial vis-
cous effects and turbulence phenomena are the causes of the deviation. At
this point we didn't know which effect is more important. However, with more
research, we believe we can include these effects in the method.
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LEVINSKY: Can you really predict separation if you only have two or

three points inside the boundary layer, like you said?

WALITT: Yes. However, I don't think our separation point on the

periphery of the body is very accurate. It might be plus or minus a couple of

degrees on either side of the correct value, and the axial location might be

a quarter of a diameter from the correct station. However, there is no reason

to make it three mesh points. We did this because of economic factors. We

could have made it ten, fifteen, or twenty points in the boundary layer and

have gotten a closer prediction.

LEVINSKY: Just so we understand this, was the calculation made

essentially at a crossflow Reynolds number of a million?

WALITT: The fuselage calculation was made at a crossflow Reynolds

nun_er of about a million per foot.

LEVINSKY: Because all the other calculations of this type that we

have seen in the literature basically are much lower Reynolds numbers, this is

a significant achievement.

WALITT: Well, it is a million per foot and the maximum body cross

section is a half a foot, so it is 500,000.

LEVINSKY: This is still large compared to the other calculations which

are on the order of a thousand.

WALITT: Yes, but in this particular case it was one million per foot.

That is why we were only able to get three points in the boundary layer.

RAAT: It seems to me that the preceding discussions have left

unclarified some of the details concerning the applicability of the unsteady

analogy. It may be useful to recall that the equivalence principle is based

on the hypersonic small-disturbance equations and this implies the double

limit M + _, x ÷ 0 (3 being a characteristic inclination of the stream-

lines wi_h respect to the oncoming flow). Under these conditions the stream-

wise velocity perturbation is expected to be an order T smaller than the

lateral velocity perturbation. This makes it possible to set the streamwise

velocity equal to its undisturbed value and to treat the lateral flow problem

separately. Now, at the indicated Mach numbers of 1.98 and 2.50, one would

not expect hypersonic small-disturbance theory to be very accurate even in

the inviscid part of the shock layer. At such low supersonic Mach numbers

it seems more realistic to assume that the inviscid streamwise and lateral

velocity perturbations are of the same order of magnitude.

JERRY C. SOUTH, JR., Langley Research Center: My question is really out

of ignorance; I have never done anything with Navier-Stokes equations, and I

haven't ever used a dissipative difference scheme, but somebody showed a paper

by McCormick to me last night that I believe was an inviscid calculation of

the flow past a sharp-cornered, blunt body, and he had no physical viscosity;

it was an inviscid flow model, yet there was an eddy around the corner, and it

was apparently caused by the dissipation of his difference scheme.
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My question is, if you have dissipative terms in your difference scheme,

could you set your physical viscosity to zero and still get the eddy around

the canopy?

WALITT: I don't think so. We tried a problem like that in another case.

We at one time calculated a Karman vortex street about a cylinder at Mach 0.2

and Reynolds number I00, and in that particular problem we were interested in

what would happen if we set the viscosity to zero. This was done and we

obtained the potential flow solution around the cylinder.

We feel that there is a numerical viscosity as well as the dissipative

viscosity; there is no question about it, but we feel that if the mesh is fine

enough the numerical viscosity is small.
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EXACT SOLUTION FOR RADIATION OF SOUND

FROM A SEMI-INFINITE CIRCULAR DUCT WITH APPLICATION

TO FAN AND COMPRESSOR NOISE

By Donald L. Lansing

Langley Research Center

INTRODUCTION

Calculating the rotational noise radiated from the compressor of a modern turbofan

engine is currently a problem of great interest. At present there exist two approximate

analytical procedures for treating this problem. One of these was developed under con-

tract to NASA by M. V. Lowson while at Wyle Laboratories (ref. 1). The other was

sketched out by J. M. Tyler and T. G. Sofrin of Pratt & Whitney Aircraft Division of

United Aircraft Corporation in reference 2. This paper presents a third,an exact theory,

which is compared with the two simpler approximate methods.

The three theoretical models used in the present investigationare shown in table I.

The firstmodel, developed by Lowson (ref.1), consists of an unducted rotor or rotor-

stator combination. This model predicts the free-space radiationproperties of the noise

source and hence may be described as a "source-only" model. This model has a minimum

of mathematical and conceptual complications. However, itis not possible to add acoustic

liners,to include shear flow through the duct, or to account for the modal structure of the

sound within the duct without startingall over again with a new theory.

The second model, which was suggested by Tyler and Sofrin (ref.2), consists of a

hard-wall annular duct which is terminated at the open end by an infinitebaffle. Tyler and

Sofrin discussed the transmission of individualmodes along the duct and their radiation

from the open end; thereby, the general mathematical form was obtained for the sound

field. However, they did not combine the duct modes to represent the noise sources within

the compressor. The baffle is an artificial device included only for the purpose of calcu-

lating the radiation patterns in front of the duct. Furthermore, this model neglects any

reflection or coupling phenomena which occur at the open end. In spite of these simplifi-

cations, the model is very attractive because it does incorporate a duct using tractable

mathematics and can act as a stepping stone toward analytical studies of ducts containing

acoustic treatment and nonuniform axial flow.

The third model, developed in this paper, consists of a semi-infinite circular duct

with hard walls. One end is open to the free field, and this open end is unbaffled so as to

resemble a sawed-off pipe. A uniform free-stream velocity parallel to the duct axis is

assumed. This flow may be used to simulate the effect of a steady flight condition on the
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radiated noise or, if one is concerned only with conditions within the duct, to simulate the

effect of the inlet or exhaust flow on the noise transmission along the duct.

The contribution of the present paper is twofold. First, the ideas laid out by Tyler

and Sofrin (ref. 2) have been synthesized so that now the duct modes are combined to rep-

resent thrust and torque forces on the rotating blades. The fact that there is an unambig-

uous mathematical procedure for summing hard-wall duct modes deserves mention since

many questions seem to arise on the matter of how the sound energy should be distributed

among the various modes. The second and main contribution of the present paper consists

of generalizing the work of Levine and Schwinger (ref. 3), Carrier (ref. 4), and Vajnshtejn

(ref. 5) on the transmission and radiation of single modes from an unbaffled circular pipe

to include flow effects, high frequencies, and high circumferential and radial mode num-

bers. Furthermore, these individual mode results are combined together to represent

thrust and torque forces on rotating blades. The coupling of the sound field within the

duct to the external free field is treated rigorously within linearized acoustic theory so

that a realistic assessment of the diffraction and reflection phenomena at the open end is

possible. Thus, the model of the present paper provides an exact solution which is use-

ful in appraising the validity of approximate methods.

SYMBOLS

An(x,r;u,k,w ) function defined by equation (9)

a duct radius

B number of rotor blades

c speed of sound

force vector acting on fluid arising from thrust and torque on rotating

blades

Fn, j(r) spanwise loading function

function defined by equation (11)

In,Jn,Jv, Kn Bessel functions

k frequency parameter, w/c
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nondimensional frequency parameter, aw/c or nB(a_2/c)

M

distance of rotating blades from inlet

Mach number, U/c

Mt

n,j

tip Mach number

integers

P perturbation pressure

Q mass source term associated with blade thickness

S source function

Sn(u,)%w) source spectrum

t time

U free-stream velocity, positive into duct

u_X_a transform variables

V number of stator vanes

perturbation velocity vector

x,r cylindrical coordinates,

_(_) = _2 _ (M_ - k) 2

0 angle around duct axis

!

_m mth zero of Jr(x)

Po ambient density

azimuth angle

x positive out of duct
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£ shaft speed

w frequency

A prime with a symbol denotes differentiation with respect to argument.

THEORY

The governing differential equations for the mathematical formulation of the radia-

tion problem are the linearized equations for the continuity of mass

1Dp+ _- Q
c"2Dt Po v" =

(1)

and the conservation of momentum

where

Po _" = -vp + F (2)

D=a_
Dt at ax

These two equations may be combined into an inhomogeneous wave equation for the pres-

sure as follows:

= 1 D2p + S (3)
V2p c2 Dt 2

The source function S depends upon the gradient of F and as shown in the fol-

lowing equation:

S = V • F - DQ (4)
Dt

The mathematical problem is to find a solution of equations (1) and (2) for p and Y

which satisfies the following auxiliary conditions:
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(1) There must be no flow through the duct wall.

(2) The radiation condition which requires the source within the duct to generate

only outgoing waves at infinity must be satisfied.

(3) The perturbation pressure must be continuous everywhere in the free field as

well as through the open end into the duct.

(4) The radiated energy generated by the source must be finite. This condition

places a restriction on the behavior of p and V- at the sharp rim at the open end.

This problem constitutes a mixed boundary-value problem which can be solved

exactly by using a combination of separation of variables and complex variable methods.

The quantities F and Q can be assumed known from the geometry and operation con-

ditions of the compressor. Consequently, S is known throughout some region within the

duct. By separating the variables where possible, the wave equation with its complicated

source term S can be transformed to a more manageable problem which can be solved

by using the Wiener-Hopf technique (ref. 6).

By using Fourier series around the duct axis, Fourier integrals for time and in the

axial direction, and Hankel integrals in the radial direction, the source term S(x,r,8,t)

can be broken down into its spectrum Sn(U,;_,w) as shown in the following equation:

+oo .boo

S(x,r,0,t) = 1 e in8 Sn(U,X,w) Jn(ur) e-i(_x+Wt)u du d_ dw (5)
(2_)3 n=-_ _oo

The spectrum can be evaluated directly from the source distribution by using

+oo

- o0

S(x,r,0,t) Jn(ur) e -in0 ei(i_x+Wt)r dr dO dx dt (6)

Similarly, the pressure can be represented in terms of its spectrum as indicated in the

following equation:

+co +Go

= 1 _ ein0SSS:
p(x,r,0,t) (27r)3n=-_ -_

Sn(u,k,w ) An(x,r;u,k,w ) e-iWtu du d_ dw (7)

The unknown function An(x,r;u,k,w ) must be determined so that

wave equation (eq. (3)). The governing differential equation for

p(x,r,0,t) satisfies the

An(x,r;u,k,w) is
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+ +-- - _+ir Or r 2 8x2
An(x,r;u,X,w ) = Jn(ur) e -ikx (8)

This is a Helmholtz type equation which has only two independent variables x,r rather

than the four original variables x,r,O,t. The important transformation accomplished is

that the forcing function on the right-hand side of the equation is no longer a complicated

function of space and time but is a comparatively simple function of just the right form

for the rest of the mathematics.

The problem is now reduced to finding An(x,r;u,_,w ). Once this has been accom-

plished, equations (6) and (7) make it possible to determine the pressure for any

S(x,r,O,t) distribution. The method used for finding An(x,r;u,X,w), which satisfies

equation (8) and the auxiliary conditions, depends upon a knowledge of the analytical

properties of the Fourier transform of An(x,r;u,X,w) in the complex transform plane.

This method is referred to as the Wiener-Hopf technique. The final solution for

An(x,r;u,_,w ) is given by the following equation:

An(x,r;u,X,w) =-Jn(ur) e-lAx 1 _-oo / In(rv(a)) Kn(a_'(a)) (0--< r-<-ar_ e -ic_x dau 2 + _2(X) +_ An(C_) _Kn(rT(a)) In(a_,(oe)) (a <=

(9)

This solution is the sum of two terms. The first term accounts for the inhomogeneous

term in the differential equation for An(x,r;u,_,w) and the second term takes care of the

auxiliary conditions. The second term is a contour integral whose integrand has two

forms; one within the duct, 0 _-<r ___<a, and another outside the duct, a =<r. The func-

tion An(a), given by the equation

An(_ ) = 2i u Jn(ua) T(_ h(o_A,M)

1- M 2 [112+ _2(l)-](l+1__kM)K(+n)(A)(o_- l)(ot 1 k >K(_n)(o_

(10)

where

h(_k,M) = _1 k

(0 --<M < I)

(-1< M-<0)
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depends upon the transform variables in the source spectrum u,k,w and contains

functions K(+n)(k) and K(_n)(_) which are themselves defined by contour integrals of

the following type:

1 yj'_ l°ge E-2Kn(a_(_))In(a_(_))_loge Z(+n)(_)--_ _ _ - _ d_ (11)

Before proceeding to any results, it will probably be helpful to discuss briefly the

nature of the source distributions which occur in fan and compressor noise problems and

show the basic expression for the far-field

_ c "_'_ _ /_ _ pressures. The sketch shows severalvariables-
of the problem. For simplicity, the effects of

mean flow are ignored. The sound generating

mechanism is the thrust and torque forces

acting on the rotating blades. These forces are periodic in nature and hence may be

expanded in Fourier series. The individual terms in this Fourier series have the form

Fn,j(r) e i[(nB-jV)0-nB_2t] where the function Fn,j(r ) depends upon the spanwise varia-

tion of the loading.

Each such source term contributes to the radiated noise field. The far-field pres-

sure arising from one such source term as predicted by the present theory is an infinite

series as shown in the following equation:

P=_mI_0 r Fn, j(r) jv(rgm)drlltan

V

Loading factor

(gm2 - k-2sin2_) K(+V)(k cos _)

Directivity factor Propagation
factor

where

(12)

v =nB - jV

Each term in the series arises from a single radial duct mode Jr(r/_m) and consists
/

of a loading factor which depends upon the spanwise distribution Fn,j(r), a directivity

factor which determines how the pressures vary with the azimuth angle _ measured

outward from the duct center line, and an important propagation factor which determines

how efficiently a mode carries sound energy along the duct to the inlet. A mode for which
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the square root is imaginary is said to be "below cutoff." The power of e is then a

negative real number so that the sound pressures decrease rapidly with 1. A mode for

which the square root is real is said to be "above cutoff." The exponential function

varies sinusoidally with l and represents a wave traveling along the duct. These duct

modes are very efficient carriers of sound energy. Because of the large number of

rotating blades and high tip speeds, compressors generally operate with many modes

above cutoff. On the other hand, ducted propellers usually have far fewer blades so that

at subsonic tip speeds they are operating entirely below cutoff.

RESULTS AND DISCUSSION

Some of the results obtained from the three radiation models applicable to the fan

and compressor noise problem are presented. Recall that these models are the Lowson

model based on the source alone, the Tyler and Sofrin model which uses a duct ending in

an infinite baffle, and the present model which consists of an unbaffled duct.

Figure 1 shows the variation of the sound power due to thrust and torque forces on

a blade element at 0.8 of the duct radius with the nondimensional frequency.parameter k.

The radiated sound power is the total sound energy produced by the source and hence is an

indication of its noise generating efficiency. For nB- jV = 6, ducted fans with subsonic

tip velocities operate in the range k < 5, whereas compressors are associated with

= 10 to 26. It can be seen that results obtained from a synthesis of Tyler and Sofrin's

ideas are in excellent agreement with the present theory over the entire frequency range.

At certain values of k, the present theory appears to have nearly vertical discontinuities.

These spikes are actually very narrow resonances which occur at the natural acoustic

frequencies of the duct cross modes. The Tyler and Sofrin model shows very abrupt

increases in the radiated sound power at these frequencies but does not peak to indicate a

resonance. However, both duct models indicate large sound pressures within the duct

near resonance. The difference in the behavior in the free field is believed to arise from

the fact that the Tyler and Sofrin model neglects the coupling of the internal and external

acoustic fields through the open end. For the length-to-radius ratio used, the Lowson

model and the two duct models differ by 10 to 20 dB (re unity) in the low k range. At

higher frequencies the two duct models give results which are at least 5 dB below the

source-only model. There are broad frequency ranges where the difference is as much

as 20 dB. For the conditions shown here the Lowson model appears to greatly over-

estimate the radiated noise.

Figure 2 shows the effect of varying the number of stator vanes on radiated sound

power. The number of rotor blades B is held fixed at 16. The tip Mach number Mt

of the rotating blades is 0.6. For very low and very high numbers of stator vanes the
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duct is operating below cutoff, hence the steep dropoff in sound power at either end of the

graph. When the number of stator vanes is between 16 and 26 blades, both theories give

essentially the same results. However, when the number of stator vanes is between 6

and 16, the sound power levels predicted by the present theory are as much as 10 to

15 dB less than those predicted by the Lowson model. The Tyler and Sofrin model gives

results (not shown) which are indistinguishable from the present theory.

Figure 3 shows a comparison of sound directivity patterns calculated for the three

models. Directivity patterns show how the radiated sound pressures vary as a function

of azimuth angle gJ measured outward from the center line of the inlet. These patterns

are polar plots of the far-field sound pressure levels in a plane through the duct axis.

As indicated at the upper lea of the figure, the origin of the directivity plot is taken at

the center of the inlet of the duct. Horizontally to the left is directly ahead of the inlet,

and vertically upward is at right angles to the inlet. The directivity pattern as predicted

by the present theory consists of one main lobe at about 50 ° to the duct axis. The direc-

tivity pattern computed from the Tyler and Sofrin model is in good agreement with pres-

ent theory except near right angles to the inlet where the Tyler and Sofrin model assumes

a baffle. As mentioned earlier, radiation patterns behind the inlet cannot be predicted

with this model. The results from the Lowson model are obviously all together different

in size and number of lobes. In particular, sound pressures at right angles to the inlet

appear to be greatly overestimated.

CONC LUDING RE MARKS

This paper has outlined an analytical method for investigating the radiation of noise

generated by rotating blades within a hard-wall circular duct. The method is based upon

a rigorous solution of the wave equation plus boundary conditions and hence provides an

exact set of calculations against which simpler theories can be compared. The method

accounts for the diffraction effects at the end of the duct and is capable of giving the com-

plete radiation pattern. Reflection effects of the inlet are also included. These effects

appear to produce resonances in the radiated sound power at the frequencies of the

acoustic modes. It has been found that the baffled duct model is in excellent agreement

with the present method for both radiated sound power and directivity patterns in front of

the inlet. However, it was found that the source-alone model did not agree well with the

present method.
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TABLE T

THEORETICAL MODELS FOR FAN AND COMPRESSOR NOISE RADIATION

INVESTIGATOR

LOWSON

(REF. 1)

TYLER

AND

SOFRIN

(REF. 2)

LANS I NG

(PRESENT

PAPER)

MODEL

DESCRIPTION

SOURCE ONLY

ANNULAR DUCT
WITH BAFFLE

CIRCULAR DUCT
WITHOUT BAFFLE

REMARKS

• MATHEMATICAL AND CONCEPTUAL SIMPLICITY

eNO DUCT

• ACOUSTIC LINERS AND SHEAR FLOW CANNOT
BE INCLUDED

=ACOUSTIC LINERS AND SHEAR FLOWCAN
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• USE OF BAFFLE IS QUESTIONABLE

• EXACTTREATMENTOF REFLECTIONAND
DIFFRACTION EFFECTSOF INLET
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Figure 1
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EFFECT OF STATOR VANE NUMBER ON SOUND POWER
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A CRITICAL EVALUATION OF PANEL FLUTTER AERODYNAMICS

By Peter A. Gaspers, Jr.

Ames Research Center

SUMMARY N70- 2 1,_ 68

Generalized forces based on Piston theory, quasi-steady theory, unsteady

two-dimensional potential flow, and unsteady three-dimensional potential

flow are compared. Curves are presented of typical generalized force compo-

nents as functions of Mach number and length-to-width ratio. More comprehen-

sive comparisons between Piston theory and unsteady three-dimensional theory

in the form of the maximum difference of all off-diagonal components of a 6×6

matrix of generalized force components are presented as functions of Mach

number, length-to-width ratio, and reduced frequency.

INTRODUCTION

In linear supersonic panel flutter analyses there are four aerodynamic

theories in common use. These are the linear Piston theory, quasi-steady

theory, unsteady two-dimensional potential flow, and unsteady three-

dimensional potential flow. Usually the simplest theory is used that will

yield acceptable results for the Mach number and length-to-width ratio of

interest. However, no detailed comparison of the predictions [i.e., pressures

or generalized forces) of the various theories is available, and at present

the choice of a particular theory is usually based on order of magnitude con-

siderations or on previous flutter results. Within the framework of linear

aerodynamic theory the unsteady three-dimensional potential flow may be con-

sidered exact and the other theories approximate. In this paper generalized

forces based on the approximate theories are compared with the exact three-

dimensional results to provide a quantitative measure of their ranges of

applicability.

SYMBOLS

a

aj

b

bj

B

panel length

Fourier coefficient (see eq. [25))

panel width

Fourier coefficient {see eq. [26))

wind-tunnel width
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BjZ rj cos[(z+ i)_] - KM

cj,d. 3

Cn

fn (x)

g(Y)

i

J

K

k

Z,m,n

M

p(x,y,t)

Pn(x,Y)

q

Qmn

R

t

u(x,y,t)

un(x,Y)

V

W

x,y

B

"fl

see equation (29)

Galerkin expansion coefficient

chordwise deflection mode

spanwise deflection

imaginary unit, /[T

integer

Mk

82

_a
V

integers

Mach number

dimensionless perturbation pressure, p* = qp

component of complex perturbation pressure

pV 2
dynamic pressure, 2

generalized force component (see eq. (4))

see equation (18)

dimensionless time, t* = (_)t

transverse panel deflection

nth mode shape

free-stream speed

downwash velocity (see eq. (9))

dimensionless rectangular coordinates, x* = ax, y* = by

/_2_ 1
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rj

J

@

P

TI,T2

¢(x,y,t)

*n (x,y)

_o

08b] + K2

see equation (24)

dimensionless rectangular coordinate

see equation (27)

dimensionless rectangular coordinate

free-stream density

see equation (9) or (20)

dimensionless velocity potential

component of complex velocity potential

circular frequency

Superscript

dimensional quantity

ANALYSIS

The coordinate system and panel geometry are shown in figure I. The

analytical formulations of the various theories in terms of the perturbation

pressure p(x,y,t) and the transverse deflection u(x,y,t) of the panel and

derivations leading to expressions for the generalized forces are given below

in dimensionless form. The relationships between dimensional and dimension-

less variables are given in the list of symbols.

MODIFIED LINEAR PISTON THEORY (REF. i)

The perturbation pressure is given by

2(_u _u)p(x,y,t) = _ _-_ +

The panel deflection is taken in the form
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N

u([x,y,t) = _ CnUn([X,y)e ikt ([2)
n= 1

where the un are specified functions. Hence, p([x,y,t) has the form:

N

p([x,y,t) = _ CnPn(x,y)e ikt ([3)
n=l

The generalized force components Qmn are defined by:

1 1

Qmn = _o _o Um([X,Y)Pn([X,y)dx dY
(4)

we consider

Um([x,y ) = sin mnx sin _y

which are eigenfunctions for a plate with simply supported edges. A straight-

forward analysis yields:

Qmn = _ m 2 - n 2 - (- m # n

!k
Qmm = i 2--ff

(s)

QUASI-STEADY THEORY (REF. 2)

The perturbation pressure is given by

p(x,y,t) = _ + - u(O,y,t) = 0 (6)

This differs from Piston theory only in the factor (M2 - 2)/(M 2 - i), and the

resulting generalized forces are

I mn

Qmn = _{m2 _ n 2 [I- (-l)m+n]}

- k m,n} (7)
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UNSTEADY TWO-DIMENSIONAL POTENTIAL FLOW (REF. 3)

The perturbation pressure is given by

(_¢ _¢)p(x,y,t) = -2 -g-if+ (s)

where the velocity potential

¢ (x,y,t) -

where

¢(x,y,t) is given by:

1 _oX IT2 W(_,y,t - _)dT d_
_ _1 /(T - T1)(T2- T)

8u 8u
W(x,y,t) = 3-f+ _-F

(9)

T 1 =
M(x- _)

M+I T2 -
M(x- _)

M- 1

Let

u(x,y,t) =

and make the transformation

N

E Cnun (x,y) e
n= 1

ikt
(io)

1
T : _ [(TI - T2)COS O + T I + T2]

yielding

¢ (x,y,t) :

Using

(ref. 4) where
results in

eikt__n=I Cn _ox (_un,_-T-+ ikun)e-iMK(x-_) In
eiK(x-E)cos e d@ d_

_ iZ cos @e d0 : _Jo(Z)

Jo(Z) is the Bessel function of the first kind of zero order

(11)
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_(x,y,t) = _. Cn_n(X,y)e ikt

n=l

_n(x,y) = S _ + ik e-iMK(x-_)Jo[K(x - _)]d_ (12)

Qmn = _o 1 _o 1 Um(X,Y)Pn(x,y)dx dy

(_$n + i_%)Pn(x,y) = -2 k_--_---

(13)

(14)

folfo 1 [_n n)Qmn = -2 Um k_--d-+ ik{ dx dy (15)

integrating by parts and using

results in

um(O,y) = Um(1,y) = 0

Qmn = 2 _- ikum)$ n dx dy (16)

Following the method of references 5 and 6 the Bessel function is approximated

by a sum of trigonometric functions in order to perform the integration for

_n:

[(i_'-_ i(x-_)K cos Z +

Jo[K(x - _)] = _2.,4e (17)

2=0

where L must be chosen to yield the desired accuracy. Let

Um = sin m_x sin zy

Substituting into equations (12) and (16) and performing the integrations
there result
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2
/=0 Y -

+ [(-i) m+n- i]\ - i (-I) m sin
y 2-m2Tr2

men (18)

L, {Qmm- 2_-Ll__0 i 2m2_2(Y/-k]2
_ Y/2-m2_2 y/2-m2_2

[(-i) m cos ¥1 - i]

+ i[- 2m2_2(-l)mCy/-k)2
yz2-m2_ 2

sin Y1 + m2_2y/ - 2m2_2k + k2ylll
(19)

where

Mk
K = --

_2

The derivation of the generalized force expressions given here closely

parallels that of reference 7. The expressions for Qmn contain removable

singularities at Y1 = m_, and numerical accuracy will be impaired if Y1 is

sufficiently close to m_. One method of avoiding this problem is to expand

Qmn in a Taylor series in Y1 about m_. Another method is to interpolate

numerically in the vicinity of a singularity.

THREE-DIMENSIONAL UNSTEADY POTENTIAL FLOW (REF. 3)

where

(2¢ a)p(x,y,t) = -2 _-_ +

_2

@(x,y,t) - b II wc_,{,t-ml) +wcE,_,t-m2) dC d{ (20)
2rra Jo J_1 R
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3u 3u
W(x,y,t) = _ + D-'t"

b2132R = (x- _)2 a 2 (y _ _)2]

i/2

a(x- ¢)
_1 = Y bB

a(x- ¢)
_2 = Y + bB

Let

T 1 =
M2(x- ¢,) - MR

B2

N
ikt

u(x,y,t) = _ CnUn(X,y)e
n=l

= 0 elsewhere

T 2 =

for

M2(x- _) + MR

82

0 < x < 1

1 1
- -- < y <2- -_

(21)

where the un are specified functions. Then

¢ (x,y,t) -
n_l fox (&l2 (3un n) (KR) d_ d_ e

b -iMK(x-E) cos ikt
Cn e k_-_-- + iku R

N

CnCn (x,y) eikt (22)
n= 1

Now _i or _2 or both may lie off the panel (outside the unit square) in

which case the inner integral of equation (23) cannot be readily evaluated.

Kobett (ref. 8) circumvented this difficulty by expanding the spanwise part of

un in a Fourier series valid over the entire range of _. One can also

account for the presence of wind-tunnel walls by constructing an image system

for the spanwise deflection and representing it as a Fourier series. Let
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Un(_,¢) = fnC_)g(¢)

1 1
g(_) = 0 _ < ¢ < 2

and let gD(_) be the periodic function obtained by reflecting
images in t_alls 2p (dimensionless) apart where p = B/2b and B
dimensional distance between the walls. Then

g(_) and its
is the

gp(C) = g(_)

= g(-C - 2p)

: g(-_ + 2p)

gp(_) = gp(_ + 4p)

I_l _ P

-2p < _ < -p

p < _ < 2p

for all

and the Fourier series is

gp(_) =E/_jaj cos _j_ + bj sin _)

j=o

(24)

1
_j =y j =o

o j#o

2__2p j_aj = cos (_)d_
2p 2-7 gp

(25)

= -- sin gp (_)d_bj 2p 2p

Making the transformation

(26)

x-
= Y + 8_ cos O (27)

in equation (23) results, after some manipulation, in
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Cn(X,Y)

J

j=O

?______x[f n, (_) + ikfn($)le -ikM(x-$) Jo[ (x-Orj]d jaj cos +bj sin 2p /J0

(28)

The integral in equation (28) is in essentially the same form as equation (12)

for the two-dimensional case. From the two-dimensional result, the general-

ized force expressions are obtained as follows:

Qmn - J i Ltl imnj /
1 j=O_ (ejajcj + bjdj) _ /=0

1 {mn[l
Imnj/ = (m2_n2)(B_/_m2Tr 2)(B_/-n2_ 2)

(-i) m+n] (n2_ 2 + 2kBj/+ k 2)

+ mn(m2-n2)u2(Bj/+k)2[l - (-I) m cos Bj/]

- i(-l)mmn(m2-n2)u2(Bj/ + k) 2 sin Bj/} m#n (29)

Innj 1 1 {2n2_2(Bj/ + k)2[l - (-i) n cos Bj/]

2(B2/ n2_2) 2J

+i[(2kn2_ 2 + Bj/n2_ 2 + Bjlk2)(B_/ n2u 2)

- (-1)n2n2u2(Bj/ + k) 2 sin Bjl] }

where

+½)

rj [('j_a_2 + K2jl/2]
= [k2p8b]

Mk B
K=-- P=--

B2 2b

B = tunnel width

344



I12 j_y¢J = 112 cos _ g (y) dy
l/2dj = sin j_y g(y)dy

J-I�2 2p

As in the two-dimensional casw expressions (29) contain removable singular-

ities that may be handled as previously discussed. The summation limits J

and L are chosen to give the desired accuracy. The derivation given here is

similar to that of reference 8. It should also be noted that three-

dimensional generalized forces have also been calculated by the numerical inte-

gration technique known as the Box method. See references 9 and 10, for

example.

RESULTS AND DISCUSSION

In figure 2 the absolute value of a typical diagonal generalized force

component IQIII is plotted as a function of Mach number for a square panel

and a reduced frequency of 1.0 for each of the four theories. It is well

known that the quasi-steady theory breaks down in the vicinity of M = /2, and

the figure clearly shows this in a quantitative way. It is also of interest

that, for M > 1.3, the simplest theory, Piston theory, gives the best results

for this combination of parameters.

In figure 3 a typical off-diagonal component QI2 is plotted for the

same parameters as in figure 2. The agreement is very good for Mach numbers

above 1.3. Note that in this case Piston theory and quasi-steady theory yield

identical results. In figure 4 Q is shown as a function of length-to-
width ratio for M = 1.6 and k = _0. It is usually stated in the literature

that Piston theory and quasi-steady theory should be restricted to Mach

numbers above I._ but limitations on a/b are hardly ever given. It is

apparent from the figure that some restriction on length-to-width ratio is

also needed since the approximate theories are in error by about a factor of

3 at a/b = i0.

For a/b > 1.0 the Piston theory predictions are generally comparable to

or better than those of either the quasi-steady theory or two-dimensional

theory; therefore, if an approximate theory can be used, Piston theory is

preferable because of its simplicity. For these reasons, in what follows only

Piston theory results are compared to the three-dimensional results. Also, it

is known from flutter studies that the off-diagonal components of the gener-

alized force matrix dominate the diagonal components in the parameter range

where Piston theory is applicable. Since each component of the Piston theory

generalized force matrix in general has a different error, in what follows the

maximum percent difference between Piston theory and three-dimensional theory

for all off-diagonal components of a 6×6 matrix is used as a measure of the

error. In figure 5 the percent difference is shown as a function of

length-to-width ratio for several Mach numbers and a reduced frequency of 1.0.

For a given Mach number the error rises sharply beyond a certain length-to-

width ratio and the a/b at which the rise begins increases with increasing

Mach number. In figures 6 and 7 contours of constant percent difference are
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plotted in the M - a/b plane for reduced frequencies of 0.2 and 2.0. From
these figures the ranges of M and a/b for a given error can be conveniently
obtained.

CONCLUDING REMARKS

On the basis of the results presented it appears that when Piston theory

or quasi-steady theory is used, limitations should be placed on length-to-
width ratio as well as Mach number, and to a lesser degree, the reduced fre-

quency should be considered. The maximum acceptable error in the generalized

forces depends on the particular problem in which they are used_but a conveni-
ent cutoff is indicated by the point where the rapid rise in error with

increasing length-to-width ratio occurs.
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COORDINATE SYSTEM AND PANEL GEOMETRY
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PERCENT DIFFERENCE BETWEEN PISTON AND 3-D THEORIES FOR
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CONTOURS OF CONSTANT PERCENT DIFFERENCE BETWEEN PISTON
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DISCUSSION

HOLT ASHLEY, Stanford University: I guess if Wally Hayes can knock the

equivalence principle I can knock piston theory, although it is worth pointing

out that the version Mr. Gaspers has been using in his paper was originally

developed by Dr. Peter Jordan in Germany during World War II in its linearized

form.

I think very wisely you didn't try to state any general conclusions about

when that method can be used, but looking at the curves, one might conclude

that for the relatively higher aspect ratio panel you can get away with taking

piston theory down to a pretty low supersonic Mach number. I don_t think that

conclusions is incorrect for the higher aspect ratio panels that you described

here. But for the benefit of those aero-elasticians that might not know too

much about aerodynamic theory, I would like to issue a warning about the use

of the piston theory generally at the lower Mach numbers. In our original

paper on the subject (Ashley and Zartarian, J. A. S., 23, 12, Dec. 1956) we

suggested that for wing flutter calculation probably a Mach number, normal to

the leading edge, in excess of 2.5 is a fairly safe rule on the basis of

practical calculations.

That brings in the fact that some panels and also a great many wings for

supersonic aircraft are swept, and I think it would be very dangerous to draw

a conclusion about even high aspect ratio swept wings and panels on the basis

of calculations made essentially for what amounts to unswept wings.

A. R. GEORGE, Cornell University: I am not an aero-elastician at all,

but it struck me that the fact that you can use narrower panels at higher

Mach numbers is related perhaps to the fact that the Mach angle is narrower

and I was wondering whether normalizing the aspect ratio by the tangent of the

Mach angle would collapse these curves, such as in figure ii, to more nearly
one curve?

GASPERS: I don't think there is any analytical way of doing what you

suggest. The three-dimensional generalized forces are complicated functions

of Mach number and aspect ratio and in addition the curves of figure ii are

envelopes of all the off-diagonal elements of a 6x6 generalized force matrix.

GEORGE: The theoretical reason is that the aerodynamic influence of a

part of a panel is limited by its downstream Mach cone.

GASPERS: It might be possible to normalize the curves in an approximate

manner, but I have not investigated this.

HARRY L. RUNYAN, JR., NASA Langley Reserach Center: I just might make

one comment about piston theory. I think it is a very valuable tool, and we

used it on the X-15 where we were worrying about the flutter of the vertical

tail, and we wanted to clear the airplane for flutter for around Mach 6. We

ran flutter tests of small wedges, since we had a tail with a cross-section

wedge, and three-dimensional linear theory was 400 or 500 percent in error,
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whereas pistQn theory agreed with the experiment, and this was because we

could include the effect of thickness using piston theory,

GASPERS: You mean by including nonlinear term?

RUNYAN: Yes. We had more terms than you had. In piston theory you can

expand the pressure expression to the number of terms you want, which brings

in new nonlinear terms. It is really a very valuable theory from Mach 2 and

higher.
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RECENT ADVANCES IN RESEARCH ON COMPRESSIBLE

TURBULENT BOUNDARY LAYERS

By Ivan E. Beckwith

Langley Research Center ° N70-21369

SUMMARY

A review is given of significant developments since 1967 in methods for computing

compressible turbulent boundary layers. Because of the indeterminate nature of relations

between the fluctuating flow correlations and mean flow quantities, the theoretical predic-

tions must be evaluated by comparisons with experimental data. Some limited compari-

sons are shown for the three main categories of theoretical approaches which are herein

designated as (1) integral methods, (2) finite-difference solutions of the partial differential

equations, and (3) correlation techniques. Selected methods from each category are

described in some detail so that possible reasons for differences in predictions can be

identified. New developments in experimental methods and results are also reviewed

briefly.

Two principal conclusions are offered. First, the greatest need at the present time

is for more detailed and more reliable experimental data for both mean and fluctuating

flow properties within turbulent boundary layers for a wide range of Mach numbers, pres-

sure gradients, and wall-temperature gradients. Measurements of surface shear stress

and heat transfer should also be obtained when possible. Second, while the integral

methods are of value for developing and assessing correlations of profile parameters and

trends or "laws" for skin friction and heat transfer, the finite-difference methods appear

to have significant advantages for future requirements.

One of the principal advantages of the finite-difference methods is the conceptual

simplicity that can be utilized in the models of the turbulent-flux terms. Since detailed

predictions of nonsimilar mean flow profiles, surface shear stress, and heating are

obtained, the reasons for poor predictions of experimental results can be identified and

appropriate modifications can be easily made. Through the use of this process which has

been called "numerical experimentation," basic understanding of turbulent-flow mecha-

nisms can be improved. Another advantage of the finite-difference methods is that they

can be more easily extended to include detailed effects of normal pressure gradients, to

account for unusual boundary conditions such as surface mass transfer and external vor-

ticity, and to compute three-dimensional boundary layers.

iNTRODUC TION

The purpose of this paper is to review briefly the more significant improvements

and extensions, developed since 1967, of methods for predicting turbulent-boundary-layer
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characteristics. The state-of-the-art for incompressible flows, at least for two-

dimensional and zero-mass-transfer applications, has been extensively treated at the

1968 Stanford conference on turbulent boundary layers (see ref. 1). A principal conclu-

sion of this conference was that (ref. 1, p. 479) "A considerable number of methods can

now predict integral parameters for incompressible 2D flows nearly as well as we

have any right to expect in view of the uncertainties indicated by the momentum imbal-

ances in the data." This statement emphasizes that reliable experimentai data for a

broad range of flows and conditions are essential in both the development and evaluation

of theoretical approaches. In order to assess the accuracy of the predictions,

"standardized" sets of data are desirable such as were tabulated in reference 2 for the

particular problem area treated at the 1968 Stanford conference. The objectives and

principal results of this conference were reviewed by Morkovin and K]ine at the 1968

Langley symposium on turbulent boundary layers (see paper no. 2 of ref. 3).

Several review papers are available that present some excellent discussion and

assessments of theoretical developments up through 1967. Spalding reviewed theoretical

methods in reference 4 and advocated the use of an effective-eddy-viscosity hypothesis

and numerical solutions of the partial differential equations. Also available are three

review papers by Bradshaw -- a brief but general treatment of boundary-layer problems

(ref. 5), a more complete review of turbulent boundary layers (ref. 6), and a review

(ref. 7) of extensions to the method developed by Bradshaw, et al. (ref. 8) for utilizing the

turbulent kinetic energy equation in numerical methods, Azzouz and Pratt (ref. 9) have

reviewed the turbulent-mixing problem. This latter problem has also been treated

recently (ref. 10) by a method which utilizes the turbulent-kinetic-energy equation.

Earlier reviews of theoretical methods and experimental data have been given by

Thompson (ref. 11), Rotta (ref. 12), and Hornung (ref. 13).

The aforementioned reviews, except references 5, 12, and 13, were concerned pri-

marily with incompressible boundary layers. In references 5 and 12 some special prob-

lems and results for compressible turbulent boundary layers were considered briefly.

The paper by Hornung (ref. 13) is one of the more complete and general reviews of theory

and experiment for compressible boundary layers available up to 1966.

Several numerical methods that were developed originally for the calculation of

incompressible turbulent boundary layers have been recently extended to adiabatic com-

pressible flows (refs. 14 to 17). The present review is concerned with these and other

more recent developments in the prediction of compressible turbulent boundary layers.

Much of the material utilized in this review is available in the proceedings of the 1968

Langley symposium (ref. 3) and in papers presented at the AIAA Fluid and Plasma

Dynamics Conference, San Francisco, California, June 16-18, 1969.
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A*

a

A2,b,C

B

Cf

Cp

F C , FR

Ue

fl,f2

G

H

H*

H_

h

K

K*

SYMBOLS

parameter in Van Driest's wall damping function (eq. (20d))

Mach number parameter (eq. (22))

parameters used in Pinckney's integral method

dimensionless blowing rate,

skin-friction coefficient,

(m')w

(PU)e

1 PeU2e

specific heat at constant pressure

functions of M e and Tw/T e

mixing-length functions(eqs. (20a) and (20b))

any dependent variable

total enthalpy, h + (u2/2)

form factor, 6"/8

kinematic form factor, 6_/0i

static enthalpy

Prandtl's mixing-length constant, approximately 0.4

proportionality constant (eq. (36))

Ye due
laminarization parameter,

u2e dx
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k molecular thermal conductivity

L reference length

mixing length

l c

lH

lu

modified mixing length to account for effect of curvature (eq. (40))

total-enthalpy mixing length (eqs. (18))

velocity mixing length (eqs. (17))

M Mach number

Nst

Npr

Npr,T

Npr,t

qw

Stanton number, (haw _ hw)PeUe

exponent in equation (33)

molecular Prandtl number, _r.:_
k

CnE
turbulent Prandtl number based on total enthalpy, _r-

K

turbulent Prandtl number based on static enthalpy

P pressure

q flux of total enthalpy

qT

q!

R S

Rx

turbulent flux of total enthalpy (eq. (6b))

magnitude of fluctuation in velocity vector, Vu '2

reference Reynolds number,
Ps2_e L

_S

Reynolds number based on x length,
PeUe x

bte

+ v'2 + w'2
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R E

R 0

PUe6_
eddy-viscosity Reynolds number, e

Reynolds number based on momentum thickness,

Roo free-stream Reynolds number per foot, P°°u°°

lateral radius from axis of symmetry

PeUe 0

_Le

r e longitudinal radius of curvature of body surface

recovery factor,

T temperature

haw - h e

H e - h e

T t stagnation temperature

velocity component in x-direction

V velocity component in y-direction

m

effective normal velocity, _ + p'u'

W velocity component normal to x- and y-directions

X

x,y

modified defect parameter of reference 15 (eq. (28))

boundary-layer coordinates, parallel and normal to surface, respectively

Ot local wall angle with respect to body center line

function in modified mixing-length relation, taken herein as the constant 7

pressure-gradient parameter,
5" dp

Twdx

ratio of specific heats

boundary-layer thickness
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5i

0

0i

K

P

X

kinematic displacement thickness, - _ dy

eddy viscosity (eq. (9a))

S_(_-__ -___PeUe rwtotal-enthalpy thickness,

momentum thickness, _(1-_P_Ue rdYrw

H-H w
normalized total-enthalpy parameter,

He - Hw

_(1 _ rkinematic momentum thickness, - _ee dy

eddy conductivity of total enthalpy (eq. (gb))

molecular viscosity

molecular kinematic viscosity, bt/P

transformed coordinates (eqs. (33))

profile parameter in Voles' law of the wake

density

shear stress

turbulent shear stress (eq. (6a))

eddy-viscosity relations of reference 15 (eqs. (26) and (2'/))

modified law-of-the-waU parameter of reference 15 (eq. (24))
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Subscripts:

aw adiabatic wall

e local edge of boundary layer

exp experimental

L laminar

max maximum

0 free-stream stagnation

S reference conditions

theo theoretical

w wall or surface

oo free stream ahead of bow shock

Superscript:

j body shape index (j = 0 for two-dimensional flow; j = 1 for axisymmetric

flow)

A primeA bar over a symbol indicates a mean value except where otherwise noted.

denotes a fluctuating value.

ABBREVIATIONS

C.T. correlation techniques

F.Do finite-difference methods

I. l_I. integral methods
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AREAS WHERE SIGNIFICANT ADVANCES HAVE BEEN REPORTED

Experimental Methods and Results

The indeterminate nature of the turbulent-flow problem requires that experimental

data be relied upon for validation of the prediction methods to a much greater extent than

for laminar flows. Therefore, while the emphasis of the present compilation is on ana-

lytic methods, it is appropriate to begin with a few remarks on some recent experimental

results.

For any given experimental situation, it is clearly mandatory to obtain as many

independent measurements as possible of both mean and fluctuating flow properties. The

direct measurement of surface skin friction with floating-element force balances has

until recently been limited to adiabatic flows with zero pressure gradient. Improvements

in the construction and calibration of these balances have now allowed their use under

conditions with pressure gradients and large heat transfer. A description of two differ-

ent balances is available in references 18 and 19, and results obtained with them are

given in references 20 and 21, respectively. (Ref. 21 is essentially the same as paper

no. 10 of ref. 3.)

In order to specify the mean flow profiles across a boundary layer, at least two

independent measurements are required. Thus, for example, from measurements of

pitot pressure and total temperature, all mean flow profile parameters such as Mach

number, velocity, and density can be computed if the usual assumption of constant static

pressure across the boundary layer is accepted. When the streamwise pressure gradi-

ents on a body in supersonic flow are large, the pressure gradients normal to the surface

are appreciable and become larger as the Mach number increases. The local static pres-

sures within the boundary layer should then be measured as in reference 22, for example.

For flat-plate-type flows where the entire development of the boundary layer occurs with

essentially zero pressure gradients, the assumption of negligible normal pressure gradi-

ent is usually justified. Recent experimental investigations on flows of this type where

two independent sets of measurements were obtained are reported in references 23 to 27.

The turbulent boundary layers on the walls of hypersonic nozzles, while subject to

the effects of upstream pressure and temperature gradients, are usually thicker than

those on models at comparable unit Reynolds numbers. These boundary layers are there-

fore convenient for detailed probing. Recent examples of such detailed profile data,

where again more than one profile parameter was measured, are available in refer-

ences 20 and 28 to 37. When these data from nozzle-wall boundary layers are plotted in

the form of _ as a function of F (sometimes referred to as Crocco plots), a nearly

quadratic variation is obtained (ref. 35). Most flat-plate-type data, on the other hand,

show on the average a more nearly linear variation as would be expected for dp/dx _ 0
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and Npr,T --1.0 for the entire boundary-layer development. Thus, even though most

of the nozzle-wall data were obtained with small local pressure gradients, itseems that

the effectsof large upstream pressure and temperature gradients that are present in the

nozzle flows may persist far downstream. Another possible cause of this difference

between flat-plate-typeflows and nozzle-wall flows has been identifiedin paper no. 12 of

reference 3. In thispaper, Jones has described a total-temperature deficiency found

near the settling-chamber wall of a typicalhypersonic facilityand has indicated that such

a deficiency could account for at least part of the quadratic trends of the variation of

with F.

Measurements of fluctuatingflow quantitiesin compressible flows are needed in

order to extend the present limited knowledge of relationsbetween fluctuating-flowcor-

relations and mean flow quantities. The investigationof reference 37 is therefore note-

worthy because the fluctuationsin density were measured for the firsttime in a turbulent

boundary layer. An electron-beam probe was used to measure both mean and fluctuating

density in the boundary layer on the wall of a shock tunnel at a free-stream Mach number

of about 9. The wall- to total-temperature ratio varied from about 0.06 to 0.16. Mean

and fluctuatingpitotpressures were also obtained in this investigation. These data on

the fluctuatingdensity and pitotpressure were utilizedin references 38 and 39 to obtain

estimates of the root-mean-square intensityof longitudinalvelocity fluctuationsfor these

conditions. By comparison with previous data itwas tentativelyconcluded (ref.39) that

the magnitude and distributionof the root-mean-square values of both the density and

velocity fluctuationsare not greatly affected by Mach number and heat transfer ifappro-

priate normalizing parameters are used. One exception to this statement is thatthe vis-

cous sublayer does appear to increase in thickness, relative to the totalboundary-layer

thickness, as the Mach number increases (see also refs. 33 and 40).

Another technique for measuring fluctuatingflow properties is the crossed-beam

correlation technique (ref.41),which yields such data as relative turbulence intensities

and integral scales of turbulence (ref.42).

Another new instrument has recently been developed that is designed to provide

direct measurements of allthree components of fluctuatingvelocities (ref.43). This

technique depends on the Doppler principle applied to changes in frequency of scattered

light from a laser beam by particles added to the flow. In order for the particles to

follow the random motions of the flow with sufficient accuracy, the density of the liquid or

gas flow must be high and the particles must be small. To date, the technique has there-

fore been used mostly in liquid or high-density gas flows, although preliminary data have

been obtained in a supersonic jet at Mach number 3. (See ref. 44.)

A further experimental result of considerable significance is the accurate measure-

merit of surface heat transfer on a flight vehicle with a turbulent boundary layer at
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Mach 20 (ref. 45). Also of significance for flight applications is the correlation of tur-

bulent heating on the windward and leeward sides of cones, swept plates, and delta wings

at angle of attack (paper nos. 17 and 18 of ref. 3). The tests reported in these two papers

were conducted at free-stream Mach numbers of 7.4 and 6.0, respectively, and for angles

of attack up to 12° and 5° , respectively.

Analytic Approaches

Since the subject of the present compilation is analytic methods, the remainder

of this paper is devoted to a discussion of the three principal approaches to the calcu-

lation of compressible turbulent boundary layers and comparisons between experimental

data and predictions obtained from selected methods. For the present purposes these

three approaches are categorized as (1) integral methods (I.M.), (2) finite-difference

solutions of the partial differential equations (F.D.), and (3) correlation techniques (C.T.).

Before proceeding to a description of these three categories and comparisons of typical

theoretical results with data, the classes of problems that can now be treated with expec-

tation of obtaining reasonable predictions are considered.

Before the development of high-speed computing machines, the methods used by the

design engineer who required estimates of skin friction and heat transfer were limited

primarily to the C.T. methods (category (3)). Such methods have been reviewed and

classified by Spalding and Chi (ref. 46) and are directly applicable only to flat-plate-type

flows with zero pressure gradients. These methods provide closed-form expressions

(or working charts) for skin friction as a function of Me, R_ or Rx, and Tw/T e.

Hence, additional assumptions for the Reynolds analogy factor 2Nst/C f and the recov-

ery factor _ are required to obtain the heat transfer. When both large heat transfer

and large pressure gradients are present locally, the more recent I.M. and F.D. methods

(categories (1) and (2)) provide more realistic predictions than the C.T. methods.

A somewhat different situation exists for nozzle-wall boundary layers where the

boundary layer near the nozzle exit has been subjected to large pressure or wall-

temperature gradients during its upstream development while local conditions are nearly

uniform. The boundary layer is then in the process of "relaxing" or adjusting to the

local uniform conditions, and the question arises as to how fast (or over how long a

streamwise distance) the boundary-layer profiles, surface shear stress, and surface

heating come into equilibrium with these local conditions. That is, does the boundary

layer "remember" its upstream history ? Comparisons of limited nozzle-wall and fiat-

plate data (ref. 47) indicate that the surface shear stress and heating may not be much

influenced by upstream history. However, the profiles across the boundary layer, par-

ticularly the relation between _ and F mentioned previously, may not relax to
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equilibrium forms until downstream distances of many boundary-layer thicknesses have

been reached. Experimental evidence of such effects are available in references 35

and 36. Theoretical studies of these effects are possible with the F.D. methods as shown

in reference 34. The I.M. approaches that incorporate appropriate profile correlations

and nonequilibrium control parameters, such as the method of reference 48, could also

be applied to these relaxing flows.

Special problems in turbulent boundary layers that will not be considered in this

review because they are treated in other papers of this compilation are as follows:

(1) Three-dimensional boundary layer with nonuniform (or nonequilibrium) surface

mass transfer, large heat transfer, and large pressure gradients (This problem is

treated by an F.D. method in paper no. 19.)

(2) Interaction between turbulent boundary layer and shock wave (A technique for

computing the interaction is presented in paper no. 21 and utilizes the concept of an

inviscid outer layer and a laminar viscous inner layer; the solution for this inner layer

may be obtained by any of the methods reviewed in paper no. 20.)

(3) A separating turbulent boundary layer (The technique of paper no. 21 could

presumably be applied to a separating turbulent boundary layer; the method of Fernandez

and Lees (ref. 49) could also be applied to this type of problem, providing a suitable

expression for the dissipation integral could be formulated.)

DESCRIPTION OF ANALYTIC METHODS

Basic Equations

Boundary-layer equations.- The boundary-layer equations for turbulent flow may be

derived from the conservation equations for a viscous heat-conducting fluid by substituting

mean and fluctuating parts for the instantaneous flow variables, applying the Reynolds

time-averaging process, and finally neglecting higher-order terms. For two-dimensional

or axisymmetric time-steady flow, the resulting equations for continuity, x-momentum,

and y-momentum, respectively, are as follows:

(1)

rc = _y r]aY\ !
(3)
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In equation (3)the upper and lower signs should be used for flows on bodies and in noz-

zles, respectively. (These sign conventions apply to flows with simple, or nonreflecting,

Mach wave systems.)

The equation for totalenthalpy is

,_._.+_,V___r..]_]r,L_ + . ,4)

All terms of order 5 or smaller have been neglected in equations (1) to (4), and the

relative order of magnitude of the coordinates and flow variables is taken as

x,r,rc,_,_,-_: OrderOrderOrderof°f°f1552t

y,_,()'( )':

,_,:

where ( )' denotes the fluctuating part of any flow variable except _' and k' which are

considered of order 53. In general, the radius to a point in the flow is given by

(5)

r = rw ± y cos

where the upper and lower signs apply to external and internal flows, respectively. When

5 << rw, this relation becomes

and

r = rw(x)

rJ drops from equations (2)to (4).

Turbulent-flux terms.- The terms which include correlations of fluctuating

quanUties

and

m

"rT = -_r'u' (6a)

qT = -_)v'_ = -_r'=_h'- _)v-_u' (6b)

have the effect of increasing the flux of momentum or total enthalpy due to the turbulence/
and are therefore known as the Reynolds shear stress and enthalpy flux. /In the

\
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conventional sense, the term -_ _ would represent the turbulent flux of heat; how-
Cp

ever, for\ the present purpose, it is convenient to retain the total-enthalpy correlation

-_v'_H'.) Since there is no general relation between these correlations of fluctuating

quantities and the mean flow variables, empirical models of the correlations must be

used to solve equations (1) to (4).

Static-pressure variation.- It should be noted that the normal-momentum equation

(eq. (3)) is generally not included in the system of equations to be solved because of the

additional complications. (These complications are associated with the hyperbolic nature

of the complete continuity and normal-momentum equations with higher-order terms

included (see ref. 50). Presumably, when only the first-order terms for turbulent flows

are retained in the normal-momentum equation, as in equation (3), the system of equa-

tions (1) to (4) is still parabolic and conventional solution techniques should be applicable.)

When r c is small, the normal pressure gradients are large and are presumably caused

mainly by the wall curvature. For this situation, therefore, the pressure distribution

across the boundary layer is nearly the same as for the inviscid flow, as shown in ref-

erence 51. The effect of normal pressure gradients can then be easily included in inte-

gral methods, as shown, for example, in references 52 and 53.

When r c is large, the normal pressure gradients may still be appreciable. Their

magnitude may then be evaluated from equation (3) which for two-dimensional flow and

large r c can be integrated to give

m

= Pw " (7)

-- ~ 1 -- TT
Then if v'2 ~_q'2 (ref.54) and _=0.15 (ref. 8), the following equation is obtained:

(8)

The variation in static pressure across the boundary layer caused by turbulent velocity

fluctuations can then be estimated after formulation of a suitable model for turbulent

shear stress. \

Eddy-Diffusivity Concepts

General relations.- By analogy with the molecular shear stress and heat transfer,

it is often assumed that eddy-diffusivity coefficients relate the turbulent correlations to
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the corresponding mean flow gradients. From equations (6a) and (6b) the total shear

stress and enthalpy flux then become

and

- a_ aft

q = qL + qT = +

Cp _y Cp _y

(9a)

(9b)

Again by analogy with the molecular Prandtl number

m

Cp_
Npr =

the turbulent Prandtl number is defined as

(lo)

Cpe
Npr,W = _ (lla)

K (eqs. (9a) and (9b))or by the use of equations (6) and the definitions of e and

v'u' 8H/_y (11b)
Npr'T - _ 8_/_}y

Since this definition of Npr,T is in terms of the total enthalpy rather than the static

enthalpy, it corresponds to the '_otal" Prandtl number defined in reference 34. An ele-

mentary analysis and the results of finite=difference solutions presented in this reference

indicated that values of Npr,T may be as large as 2.0 for nozzle=wall boundary layers.

From the definitions of _, K, and Npr,T , equations (2) and (4) may be written as

and

_x + pv _y = -_x + rJ aYA

--_ -~_ 1 a j____

pu _ + pv _-y: r-_ a-_ _ L\NPr

(12)

+ Npr,TjSy + _ = (13)

Since the appropriate boundary conditions on _ and H are
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= O;H= Hw(x)

- Ue(X);H - He

(14)

itcan be seen thatfor

is the Crocco integral

a_/ax = o, Npr = 1.0, and Npr,T = 1.0,a solution to equation (13)

H-H w
= F (15)

He - Hw

if Hw, Ue, and H e are constants. From the definitionof Npr,T (eq. (11b)),the ratio

of the streamwise-momentum and total-enthalpyflux correlations for an ideal gas under

these conditions is then

v_u' Ue = (T- 1)M2 (16)

implies that the turbulent momentum flux and

v'H'

Hence the assumption of Npr,T _ 1.0

enthalpy flux are caused by the same or closely related mechanisms since their ratio is

constant for given values of Me, Ue, and Tw/To. It follows that when any of the afore-
/. \

mentioned restrictions 8/_x _-0, Npr = 1.0, and constant rw) are not satisfied, the

assumption of Npr,T _ 1.0 may not be applicable.

Mixing-length expressions.- One of the more successful models for eddy-

diffusivity relations is based on Prandti's mixing-length hypothesis, which states that

_u G' _)G
v' _ u' _"/u Ty and = l G _-y where G is any quantity diffused or transferred by the

action of turbulence. Application of the hypothesis to Reynolds stress or turbulent shear

stress then gives (from eqs. (6) and (9))

TT ._v,u----7--21851_ (17a)

or

E = Pl u (17b)

where the absolute sign is used to insure that the shear stress will have the same sign as

the velocity gradient. Similarly, the flux of total enthalpy becomes
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(

qT = -_v-_H' = P/u lH _-y

or

The turbulent Prandtl number (eq. {lla)) is then

(18a)

(18b)

I u

Npr'T =_H (19)

When Npr,T > 1.0 (see ref. 34), equation (19) indicates a smaller mixing length for

enthalpy than for velocity.

For direct application to the calculation of boundary layers, the velocity mixing

length l u in the outer part of the boundary layer is usually scaled to the boundary-layer

thickness (ref. 4). That is,

= fl (20a)

where the function fl is based on experimental data such as those of references 55

and 56 for incompressible flows. Calculations by Maise and McDonald (ref. 57) and

Patanker and Spalding (ref. 17) have shown that the same function is applicable to adia-

batic compressible flows on fiat plates (small values of dp/dx). Results obtained by

Bushnell and Beckwith (ref. 34) indicate that for application to nonequilibrium compres-

sible flows with pressure gradients, the mixing-length function may also depend on the

incompressible form factor H_i; hence

T = f2 , (20b)

These and other results (for example, ref. 39 and paper no. 15 of ref. 3) indicate that the

turbulence properties of compressible turbulent boundary layers can be correlated on the

basis of scale factors that depend only on the kinematics of the flow rather than the

dynamics. Thus, the variations in density apparently have little effect on the empirical

models of the turbulent flux terms which retain their basic kinematic character (see also

refs. 58 and 59).

In the near-wall region of a boundary layer where the only length scale factor is

the distance normal to the surface, the Prandtl mixing-length relation becomes
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tu = Ky (20c)

Experimental data show that K = 0.4. Again, this value of K is found to be nearly a

universal constant. When the boundary-layer equations are integrated all the way to the

wall as in some of the F.D. methods (refs. 15, 16, and 34, for example), it is necessary

to modify equation (20c) to provide the correct behavior of TT (or e) as the wall is

approached. Analysis of the basic equations shows that e should vary as y4 or y3

as y -* 0 (see refs. 60 and 61). Van Driest's wall damping function provides this type

of variation and also accounts for the effect of Reynolds number (or density level) on the

sublayer thickness (ref. 62). Equation (20c) then becomes

/u = K_-exp(-_-_ly (20d)

where A* = 26. This damping function has also been used in references 16 and 17. A

different function was used for the same purpose in reference 15. For application to

problems with wall blowing, A* may be considered a function of the blowing parameter

2B/Cf as shown in reference 34.

Eddy viscosity in the outer part of the boundary layer.- Clauser introduced an alter-

nate approach to the mixing-length formulation for eddy viscosity (ref. 63) with a Reynolds

number parameter

PUeS* (21)
Re = E

Clauser showed that for equilibrium flows the value of this parameter was nearly con-

stant at R e = 60 in the defect or '4rake" portion of the boundary layer where the direct

influence of the wall is negligible. When this formulation is applied to adiabatic com-

pressible flows, the same constant value of R e _ 60 gives good results (refs. 15 and 16)

if the scale factor 5i is retained in the incompressible form. Hence, this is another

example of how the characteristics of turbulence for compressible flow seem to depend

only on the kinematics of the flow.

Category 1: Integral Methods (I.M.)

As is well known, the integral methods are based on solutions of various integral

forms of the equations of motion. That is, the momentum and enthalpy equations (usually

written as eqs. (12) and (13)) are combined with the continuity equation (eq. (1)) and inte-

grated across the boundary layer to give two ordinary differential equations for the

momentum thickness 8 and total-enthalpy thickness O. These equations cannot be

solved without additional information or assumptions for the form factor H*, the surface
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shear stress 7w, and surface heat transfer qw as functions of 8, O, and the boundary

conditions of the problem such as wall temperature and pressure gradients. An additional

difficulty for compressible flows is that H* is a function of not only the velocity profile

shapes but also the density (or temperature) profiles. Since general formulations for

these functions are not yet possible, many different procedures based on various assump-

tions have been developed. Typical of these procedures is the technique of first multi-

plying equation (12) (combined with eq. (1)) by a weighting function and then integrating the

new equation across the boundary layer. In this way, a new ordinary differential equation

can be obtained for each weighting function used. Thus, for example, if the weighting

functions are just y or 6, the resulting integral equations are known as the moment-of-

momentum equation and the kinetic-energy equation, respectively. For turbulent bound-

ary layers additional unknown integrals involving the turbulent shear stress then arise.

With weighting functions y and 5, these unknown integrals are called the shear-stress

integral and the dissipation integral, respectively. A large body of literature is con-

cerned primarily with the development of correlations and expressions for these integral

quantities.

Since about 1962 an improved method of integral relations has been developed

wherein the weighting functions are linearly independent functions of _ (see paper

no. 14 of ref. 3; ref. 64; and ref. 1, pp. 16-29 and 46-53). The proponents of this method

claim that, in principle, the solution of the resulting system of ordinary differential equa-

tions can approach the correct solution of the original partial differential equation if the

weighting functions satisfy all boundary conditions and are chosen to avoid singularities.

In this approach the unknown shear-stress integrals are evaluated by the use of conven-

tional eddy-viscosity relations such as equations (17) to (21). Thus, one advantage of the

simpler integral methods is lost since the detailed behavior of the turbulent shear stress

or heat transfer across the boundary layer has to be specified.

Rather than to attempt a detailed discussion of the many different integral methods

and the great variety of assumptions used in their formulation, the following discussion

is limited to four methods that utilize 6 or y as weighting functions. Predictions

from these four methods are compared with data and some of the assumptions used in

each method are discussed briefly.

Reshotko-Tucker method (ref. 65).- The method of reference 65 was included herein

mainly because it is representa_ve of several of the early approaches. Also, as pointed

out by McDonald (paper no. 6 of ref. 3), the method has been widely used and some simple

modifications of the basic approach (for example, refs. 66 and 67) have provided much

improved predictions. (The more important of these modifications was to the expres-

sions for the shear-stress integral.) The method of reference 65 utilizes the momentum

and moment-of-momentum integral boundary-layer equations which are solved directly

in the transformed plane for the transformed momentum thickness and form factor.
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Stewartson's coordinate transformation was used. The skin-friction relation was

obtained by application of Eckert's reference-enthalpy expression (ref. 68) to the

Ludwieg-Tillmann skin-friction equation for incompressible flow (ref. 69). In order to

express the moment-of-momentum equation in terms of the form factor, power-law

velocity profiles were used, a functional relation between the shear-stress integral and

form factor was assumed, and integrals of the enthalpy profiles were assumed to have

the same functional relation to the form factor as in laminar flows. All these functions

and assumptions were applied in the transformed plane. Finally, to compute the heat

transfer, the Reynolds analogy factor was modified to account for the effect of pressure

gradient by analogy with a laminar-flow result. The results computed by this method

and presented herein were taken directly from paper no. 6 of reference 3.

In retrospect, the many assumptions used in the Reshotko-Tucker method seem dif-

ficult to justify. For some flow conditions, the much simpler and straightforward method

developed by Charles B. Johnson and described briefly in reference 35 would probably

give predictions at least as good as the method of reference 65. This statement is based

on the good results obtained from Johnson's method for a wide range of conditions

(ref. 35). Also in Johnson's method the velocity and enthalpy profile correlations were

based directly on experimental data, the calculations were carried out in the physical

plane, and the Spalding-Chi skin-friction relation (ref. 46) was used.

Camarata-McDonald method (ref. 70).- The method of reference 70 has been

included in the present review because the momentum and moment-of-momentum integral

equations have been used just as in the Reshotko-Tucker method except that two signifi-

cant modifications have been introduced which, on conceptual grounds, might be expected

to improve the predictions. The procedure is described briefly in paper no. 6 of refer-

ence 3 and also in reference 1 (pp. 83-98) as applied to incompressible flows. The two

significant modifications of the Reshotko-Tucker method are the procedure for evaluating

the shear-stress integral and the use of Coles' transformation (ref. 71) for velocity pro-

files and skin friction. In order to evaluate the shear-stress integral, the "extended

mixing-length hypothesis" was introduced wherein the value of the mixing length in the

outer part of the boundary layer varied in the streamwise direction as governed by an

integral form of the turbulence kinetic-energy equation. In this way the effect of the

upstream history on the local turbulence properties (that is, on the mixing length) is

accounted for. Consequently, this new method presumably represents a conceptual

improvement over the previous methods of references 65 to 67 where the shear-stress

integral was assumed to be a function of local conditions only (I-_* or a combination of
/

In order to compute heat transfer, a Reynolds analogy factor would be required.

Itowever, published results from this method have been limited to predictions of skin

friction, momentum thickness, and form factor.
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Alber-Coats method (ref. 48).- In the method of reference 48 the momentum and

mean kinetic-energy integral equations are solved simultaneously in the physical plane

for the dependent variables 5" and 7r. The velocity profiles and a differential equa-

tion for skin friction were obtained from Coles' incompressible "law-of-the-wall" and

"law-of-the-wake" forms (ref. 72) which were adapted to compressible flow by replacing

the incompressible velocity by Van Driest's generalized velocity

u* = u e 1 sin-la u (22)
a Ue

where a=_l_-lM2)/ll+2 _ 2ZTM2e)" For equilibrium flows , dlr/dx--0, andthe

dissipation integral is then an analytic function of the profile parameters, the skin-
_d

friction function, and the equilibrium pressure-gradient parameter _r -- 5r-_w-_. For

application to nonequilibrium flows, the dissipation integral is "unhooked" from the local

pressure gradient by assuming the empirical relation between _r and _ is the same

as that found for incompressible flows (ref. 1, pp. 126-135). While the method has not

yet been applied to compressible nonadiabatic flows, a procedure was derived and illus-

trated for incompressible flows (ref. 48). In this procedure, law-of-the-wail and defect

solutions for the enthalpy profiles were used to derive a local heat-transfer law and a

modified Reynolds analogy relation that incorporates the effects of wall temperature and

pressure gradients. These results would then be used in conjunction with a two-parameter

family of equilibrium enthalpy profiles as obtained from numerical solutions of the

thermal-energy equation. An eddy-thermal-conductivity formulation similar to the eddy-

viscosity expressions as given in equations (17b), (20c), and (21) was used to obtain these

solutions. The only advantage in this approach is that the energy equation is an ordinary

differential equation which, at least for incompressible flow, can be solved once for all

for a given range of the equilibrium wail-temperature and pressure-gradient parameters.

Extension of this procedure to compressible flows, particularly for hypersonic con-

ditions, may be fraught with unforeseen difficulties. While the general approach is obvi-

ously useful in the derivation and study of correlation parameters, the numerical advan-

tages of solving ordinary differential equations, present in all I.M. approaches, may be

outweighed by the conceptual problems.

Pinckne_ method.- A complete description and detailed derivation of the method of

S. Z. Pinckney of NASA Langley Research Center has not yet been published but the main

features of an earlier version of the method were described briefly by Henry in paper

no. 19. of reference 3. In the method as applied herein, the momentum, moment-of-

momentum, and total-energy integral equations are solved simultaneously in the physical
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plane for the dependent variables 5, C, and A 2. The variable C is a coefficient in a

modified Crocco relation between the velocity and static temperature. An iterative pro-

cedure at each station in the solution determines the local value of C which makes the

integral of the total-energy profile consistent with the net heat transfer along the surface

of the body up to the local station (see ref. 73). The variable A2 is the coefficient of

the term log y/5 in a modified Coles' law-of-the-wall and law-of-the-wake velocity

profile relation. The shear-stress integral in the moment-of-momentum equation was

evaluated with a shear-stress profile of the form

= 1 + _y_b (23)
Tw \o/

where the exponent b is a correlated function of Mach number and of the y derivatives

of velocity and temperature evaluated at y/5 = 0.95 from adiabatic fiat-plate profile

data. Spalding-Chi skin friction and heat-transfer relations from reference 74 were used.

These brief synopses illustrate the conceptual and mathematical difficulties often

encountered in the formulation of general I.M. approaches. The effects of the different

assumptions on the final predictions are difficult to evaluate since usually they are not

easily isolated or modified.

Category 2: Finite-Difference Solutions of Partial Differential Equations (F.D.)

In contrast with the I.M. approaches, the methods considered in this section are

simple in both concept and mathematical manipulations.

required to execute the solutions are often more simple

required in some of the more complex I.M. approaches.

The computer programs

and straightforward than those

However, longer computer times

are generally required for the F.D. methods because of the large number of repetitive

calculations that are required.

Since the partial differential equations are solved directly by numerical methods,

subject to specified initial conditions and the boundary conditions of relations (14), only

three aspects of the various F.D. methods can account for different predictions for the

same problem. These three aspects are (1) the models of the turbulent-flux terms,

(2) the basic numerical procedures for solving the equations, and (3) the interpolation or

fairing procedures applied to the input information. The following discussion is limited

to four methods selected to illustrate the effects of variations in some of these aspects.

One important approach not included in the following detailed descriptions utilizes

independent partial differential equations for the turbulent-fiux terms or related turbu-

lence correlations. These equations are derived from basic principles and govern the
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dynamics or detailed behavior of these correlation terms. The difficulty in this approach

is that the problem of closing th system of equations is only moved up the hierarchy of

unknowns from the second-order to the third-order correlations. For incompressible

flows, the required relations can be satisfactorily modeled as indicated, for example, by

the results of references 8, 75, and paper no. 7 of reference 3. For compressible flows,

progress has been limited by the lack of knowledge of both second- and third-order cor-

relations, some of which do not appear in the equations for incompressible flow. The

only attempt published to date to solve the compressible-boundary-layer problem by this

approach is that of Bradshaw (ref. 14) who has extended his method for incompressible

flow directly to adiabatic flows with M < 4.

Herring-Mellor method (ref. 15).- The eddy viscosity used in the method of refer-

ence 15 for the wall or inner layer was (in the present notation)

-- = X4+-----_ 1 + (24)
×3 + (6.9)3

where

For large values of X,

or

ay

For small values of × or for y-0, e varies as y4 which, as noted previously,

should be the correct trend.

In the outer or defect layer, Clauser's relation (ref. 63) was modified to give the

forms

I

y.+e
¢ =_ = x (x < o.o16) (26)

Neff

and

¢ =0.016 (x _ 0.016) (27)
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where

_ Ky/_ K--_Y,_I-_÷_a_--_-,--- _X UeSi V_ UeSi
(28)

Hence for ¢ = 0.016, Clauser's relation in the form of equation (21) is obtained if

e>>/_. When ¢=X,

- a_
/_ + e = _K2y 2 a'-_ (29)

Thus in the overlap region between the inner and outer layers (that is, for large × and

for X < 0.016), inner relation (25) is asymptotic to the outer relation evaluated for

X < 0.016 (eq. (29)). Except for the appearance of the molecular viscosity _', equa-

tion (29) is identical to the Prandtl wall mixing-length relation obtained by substituting

equation (20c) into equation (17b). Since for most situations e/_" >> 1.0, the appearance

of _ in relations (24) to (29) should not cause any difficulty except when

small and e

introduced as

is very

is of the same order as _'. A tentative modification to equation (27) was

(30)

which would have the effect of increasing e/_" in the outer part of the layer and would

therefore suppress the effect of _" in equation (27). The main purpose of this modifica-

tion, however, was to maintain an overlap layer, which for ¢ = 0.016 tends to disappear

when the local value of _ in the sublayer becomes small.

The partial differential equations were solved in the x,7/plane where 77= y/5*.

(Some numerical problems would be expected when 5* becomes very small, or even

negative as for highly cooled walls.) All x

difference expressions

derivatives were replaced with the finite-

_._GG=GI'Go Gm-Go
= (31)

t}x x I - x o x m - x o

where G represents any of the dependent variables and x m is an adjustable point

intermediate between the initial station x o and the downstream station x 1 where new

profiles are required. The partial differential equations were then reduced to two ordi-

nary differential equations in the variables Gm with all corresponding G O values

known or specified at station x o. The new set of variables G 1 required at station x 1

are then determined by extrapolation from equation (31). A fourth-degree Runge-Kutta
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method is used to solve the set of ordinary differentialequations for Gm that are first

written in a pseudolinear form. This procedure, together with the use of an asymptotic

solutionwhich assures the correct exponential behavior for large 77,eliminated the

numerical difficultiesoften encountered in the "shooting techniques" used previously, for

example, by Smith and Clutter (ref.76).

An operational procedure was available for computing the initialvelocity and

enthalpy profiles when they are not availableat the input station. The boundary condi-

tions of Me,T w (or Me,(OT/Oy)w ) are read in at the discrete values of x 1 where pro-

files are to be computed and the location of the intermediate points x m are specified.

The solution of the ordinary differential equations for momentum and energy was carried

out by an iterative procedure. In this procedure, the velocity profiles, enthalpy profiles,

and effective diffusivities were computed in that order from the momentum, energy, and

diffusivity relations by utilizing "updated" values for each successive step within the

iteration loop. From two to seven iterations were required to obtain convergence. Note,

finally, that the eddy diffusivity for heat was computed from a turbulent Prandtl number

Npr,t defined in terms of the static enthalpy. While Npr,t could be specified as a

function of y, Npr,t = 1.0 was used for all cases reported in reference 15.

Fish-McDonald method (ref. 77).- The method of reference 77 was described briefly

by McDonald in paper no. 6 of reference 3. The predictions by this method, as given in

the present review, were taken directly from reference 3. In these predictions the

Herring-Mellor eddy-viscosity relation was used as just described in the previous para-

graphs. Therefore, according to McDonald (paper no. 6 of ref. 3), "any differences which

might arise between the predictions of the Herring procedure and the Fish-McDonald pro-

cedure can at this stage only be attributable to the differences in the numerical techniques

employed."

The Fish-McDonald method uses essentially the same numerical technique as that

of Cebeci, Smith, and Mosinskis (given in ref. 16 and described in more detail in ref. 78),

except that the streamwise derivatives were replaced by four-point (least-squares) finite-

difference formulas rather than the three-point formulas of reference 16. Five-point

finite-difference formulas were used in the direction normal to the surface. The resulting

system of algebraic equations are linearized and solved in the physical coordinates by a

matrix-inversion method. The iteration procedure used provides a final solution which

presumably has converged to the correct solution of the original nonlinear system of

equations. The method is an implicit finite-difference procedure in the sense that the

final values of the dependent variables calculated at each grid point depend on the previous

values all the way across the boundary layer (in this case at the three upstream stations,

since four-point finite-difference formulas are used in the x-direction) through the simul-

taneous solution of the system of equations and the iteration procedures used. In contrast

%
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to this implicit procedure, the variables at each grid point in a simple explicit method

depend only on the values at the three grid points just upstream of the point where values

are being computed.

Bushnell-Beckwith method (ref. 34).- The eddy-viscosity model used in the present

calculations by the method of reference 34 combined the outer and inner wall-region

mixing-length relations given by equations (20b) and (20d), respectively. Thus, a single

relation for eddy viscosity was applied to the entire boundary layer. This relation was

_=pf_ -exp A--_-_wV_-__ I_1 (32)

where the function f2 (see eq. (20b)) is the same as that of reference 34. (The depend-

ence on I_* was taken as variation (3) of fig. 2 in ref. 34.)

The numerical technique of reference 34 is also an implicit finite-difference pro-

cedure wherein the partial derivatives in the equations of motion are replaced by linear

difference quotients. A two-point central differencing scheme is used in both the stream-

wise and normal directions as in reference 75. The result is a set of N-1 linear equa-

tions for each of the unknown variables (the mean velocity fi and the enthalpy) at the

N grid points for the next downstream station. The matrix for each of these sets of

linear equations is tridiagonal, so an efficient algorithm is available for the solution of

each matrix (ref. 79). Instead of solving the matrices for the momentum and energy

equations simultaneously as in reference 80, they were solved separately and successively

during each cycle of an iteration procedure. The transformed normal velocity is then

obtained from the continuity equation. The iteration procedure applied successively to

the sets of linear equations then provides a convergent solution to the nonlinear system of

partial differential equations as in the methods of references 16 and 77.

Since the boundary conditions at the wall and outer edge are imposed on the sets of

linear equations at each streamwise step and the equations in each set are solved simul-

taneously, the correct slopes of the velocity and enthalpy profiles at the wall are auto-

matically obtained during each step of the iteration cycle. The sensitivity of the solutions

to these wall slopes, which in previous methods (ref. 76, for example) had to be deter-

mined by direct iteration to satisfy the outer-edge boundary condition (the two-point

boundary-value problem), is thereby eliminated completely.
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The equations are solved in the transformed coordinates wMch are defined as

= Rs 0 (P )s

T/(L,_)= Rs Ue/2_ rj _y/Lp
Woo Nd )

(33)

where _ is adjusted to obtain nearly a constant boundary-layer thickness in the _,_7

plane and thereby increase the computational efficiency. A variable step size in the

7/-direcUon also increases the computational efficiency, as in reference 75, by increasing

the relative number of steps near the wall where finer detail is required. Tabular inputs

are used for both the initial profiles and the wall and edge boundary conditions.

Harris method.- A complete description of the method of Julius E. Harris of NASA

Langley Research Center has not yet been published. The eddy-viscosity relation used by

Harris for the results given in this review is essentially the same as that of Cebeci,

Smith, and Mosinskis (ref. 16). That is, the law for the inner region uses the Prandtl

mixing-length relation (eq. (20c)) modified with the Van Driest damping function to give

= - exp _P.L _ m (34)einner K2y 2 - _ 8_
26_" _y

The law for the outer region is Clauser's relation (see eq. (21)), but the eddy viscosity is

multiplied by an intermittency function similar to that of reference 54.

The numerical procedure for solving the equations is an implicit finite-difference

procedure developed by Davis and F1Cigge-Lotz for solving the first- and second-order

boundary-layer equations (ref. 50). In this procedure, a Levy-Lees type transformation

is applied to the partial differential equations; then the derivatives in both the streamwise

and normal directions are replaced with three-point finite-difference formulas. The

finite-difference quotients are therefore accurate to the order of the square of the step

sizes in both directions rather than in the normal direction only as in the method of ref-

erence 34. The resulting algebraic equations are linearized and solved in the same way

as by Blottner (ref. 80) in that the matrices for the momentum and energy equations are

solved simultaneously. The use of this procedure apparently reduces the number of

iterations required to obtain convergence, as compared with methods in which these

matrices are solved separately during each iteration cycle as in reference 34, for

example. In the computer program developed by Harris, the initial and boundary condi-

tions can be specified as either analytic or tabulated functions.
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Category 3: Correlation Techniques (C.T.)

As mentioned in the section "Analytic Approaches," C.T. methods have been

reviewed and classified by Spalding and Chi in reference 46 where the various assump-

tions and equations embodied in each of five types of C.T. methods are given in some

detail. For the present purposes, it is therefore sufficient to list four main types of

these methods with brief comments and a few representative references. Since these

methods are primarily concerned with the prediction of skin friction, additional assump-

tions for the Reynolds analogy factor 2Nst/C f and recovery factor _ are required

before heat-transfer predictions can be made. The predictions from these methods are

strictly applicable to flat-plate-type flows only (dp/dx = 0); however, they have been

widely used for parametric design studies of supersonic Vehicles and will continue to be

useful for preliminary design estimates. Consequently, in a subsequent section, predic-

tions from one method representative of each of the following four main types are com-

pared with recent experimental data for skin friction and heat transfer.

Reference temperature.- Reference-temperature methods utilize formulas devel-

oped for incompressible flow by evaluating all gas properties that appear in these for-

mulas at some intermediate or reference temperature (or enthalpy). This reference

temperature is generally a function of Me, Tw, and Taw as determined by empirical

correlations with data. Typical methods in this group are those of Sommer and Short

(ref. 81) and Eckert (ref. 68).

Assumed functional relations.- A universal function _P is assumed of the form

where F C and F R are functions of Me and Tw/T e. At least one of these functions

F c and/or FR) would be determined empirical correlation methods. Since for flat-by

plate flows, relations between Cf, Re, and Rx can be specified (ref. 82, for example),

the function g_ can be expressed also in terms of Rx. This method was developed by

Spalding and Chi (ref. 46) and modified slightly by Komar (ref. 82).

Use of Prandtl or yon Karman wall mixing-length relations.- Either the Prandtl

mixing-length relation (eq. (20c)) or von Karman's assumption that

u' = v' = K* (dfi/dy)2 (36)

d2Q/dy 2

is used to obtain the shear stress which is assumed constant across the boundary layer

and equal to the wall value. The resulting differential equations for the velocity are
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and

~ Cf /dd_/2_- ~..__ peu2 = _K2y 2 (37)

~ Cf
_ --_- PeUe2 _K .2

(dfi/dy)4
(38)

After the assumption of approximate relations for _(y) or _(_) (generally a Crocco

relation), these equations are solved for _(y). Then with the use of the flat-plate

momentum integral equation

d8 _ Cf
dx 2 (39)

closed-form expressions or charts are obtained for Cf in terms of Me, Tw/Te,

Taw / Te, and parameters or constants used in the density function.

Typical methods in this group include those of Van Driest (ref. 83 with eq. (37);

ref. 84 with eq. (38)), Wilson (ref. 85), and Rubesin, Maydew, and Varga (ref. 86). The

last two methods were based on yon Karman's mixing-length relation (eq. (38)).

Compressibility transformations.- The general objective of compressibility-

transformation methods is to devise a set of analytic functions which relate or transform

all quantities in an unknown compressible flow to a corresponding incompressible flow.

In this way the larger amount of more reliable data for incompressible boundary layers

can be utilized directly to provide predictions for the compressible counterparts. When

large, arbitrary, streamwise pressure gradients are present, the companion incompres-

sible flow must generally be calculated by suitable integral or finite-difference methods

such as those of reference 1. Another advantage of the transformation methods is that no

arbitrary assumptions for the behavior of the turbulent flux of momentum in the compres-

sible flows are required. This advantage cannot generally be realized, however, unless

the approach of Coles is used wherein the "transformation represents at every stage a

genuine kinematic and dynamic correspondence between two real flows" (p. iii of ref. 87).

It immediately becomes obvious from this statement and from the equations treated by

Coles and others that when physical phenomena encountered in the compressible flow do

not even exist in the corresponding incompressible flow, the transformation methods may

not provide reliable predictions. Examples of this lack of correspondence of the trans-

formed incompressible flow are as follows:

(1) When streamwise pressure gradients are large in a hypersonic boundary layer,

then the normal pressure gradients are also l_:ge because of the inherent Mach wave

structure of the flow. The corresponding normal pressure gradients in the
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incompressible, low-speed flow do not exist (essentially because the fi2 term in eq. (3)

becomes a higher-order term). For the same reason, the tendency for the effects of

upstream history to persist for large downstream distances in hypersonic flow (see paper

no. 12 of ref. 3 and ref. 36) cannot be duplicated by the incompressible flow.

(2) When the Mach number is large, the last term in the bracket of equation (4)

(viscous dissipation) may become important near the wall where the temperature and vis-

cosity are large. Again the corresponding term in the low-speed flow is of higher order.

(3) If the energy equation for the static enthalpy is used, a first-order turbulent

dissipation term u_v'u''_ arises (see eqs. (6)). This term is again of higher order in

low-speed flows and hence is usually neglected in the energy equation for the transformed

flow. This and the preceding limitation would apply mainly to the calculation of heat

transfer.

(4) When the heat transfer is large in the compressible flow, 3"T//_y is large both

in the compressible flow and in the corresponding incompressible flow which is, however,

restricted by the conditions that 8._ _. 0 and that _ is constant. Hence, for any rea-
8y

sonable equation of state for gases, the requirements for correspondence between the two

flows cannot be satisfied.

(5) Lastly, if the turbulent correlation terms containing p' are significant in low-

density compressible flows (as indicated by tentative results of ref. 34), then the trans-

formation again breaks down because of the constant-density limitation in the low-speed

flow.

In view of these limitations, it should not be surprising that the transformation
/ \

methods have so far yielded good results only for moderate Mach numbers (Me < 6.0),

moderate heat transfer rT(_n..n> 0.5),\ and moderate streamwise pressure gradients. Vari-

ous modifications of the Coles approach have been developed and the resulting predictions

are compared with data in references 88 to 91. In reference 91 the formal transforma-

tion theory for arbitrary pressure gradients was used to compute integral parameters for

three different cases of adiabatic flows with large pressure gradients and M e =<3.0.

(The results for one of these cases is discussed in a subsequent section.) This method

(ref. 91) might be termed an integral method, since the corresponding incompressible

flows were computed by an integral method which used the momentum and moment-of-

momentum integral equations and a differential form of the skin-friction law based on

Coles' law-of-the-wall and law-of-the-wake formulation (ref. 72).
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COMPARISONS OF PREDICTIONS WITH EXPERIMENTAL DATA

A few comparisons of predictions from the I.M. and F.D. theories with experimental

data are included in subsequent sections of this review to indicate in a limited way the

scope and capability of these theoretical methods and their relative accuracy for only

those particular cases shown. These comparisons are not intended to provide any gen-

eral assessment of the absolute or relative accuracy or reliability of these theoretical

methods. The reader is cautioned that any such assessment should not be attempted

without reference to the original sources and the large number of comparisons available

therein. Remarks in this section and elsewhere in this paper regarding the relative

merits of the various I.M. and F.D. methods are based on a careful perusal of all avail-

able comparisons and some limited personal experience with the use of some of the

methods.

On the other hand, predictions from the C.T. methods are compared with most of the

available data obtained by direct measurements with surface-shear-stress balances on

flat plates. The corresponding heat-transfer data are not as extensive, but include most

of the recent data obtained for the same range of Tw/Taw as that of the shear-stress

data. The review of the C.T. methods is thus a reasonably current and general assess-

ment of the four representative approaches considered. Since the C.T. methods are used

widely for parametric design studies and even for final estimates of surface friction and

heating, they are considered first.

C.T. Methods for Skin Friction and Heat Transfer on Flat Plates

One method from each of the four groups of C.T. methods listed in the preceding

section has been selected for further assessment by detailed comparisons with data. The

methods selected are those of Sommer and Short (ref. 81), Spalding and Chi (ref. 46),

Van Driest (ref. 84), and Coles (ref. 71). The experimental data and calculations are taken

from the detailed survey paper of C.T. methods by Hopkins, et al. (see ref. 21 or paper

no. 10 of ref. 3), which includes new data obtained with surface shear-stress balances on

flat plates at M e=6.5 and M e=7.4 for 0.31- Tw =<0.51 and 2100<R_<8400.
Taw

These data were compared with other data (also obtained with balances) for Me < 7.4,
Tw

>0.13, and 2000<R 8<700000.
Taw

The results are shown in figure l(a) as percent deviations of data from predictions

by the four methods. Both the predictions and data were used throughout as functions of

R0 rather than Rx to avoid the problem of defining a virtual origin of the turbulent

boundary layer. The use of R 0 confers the further advantage of widening the applica-

bility of the methods to flows with favorable and mild adverse pressure gradients, since
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fairly simple integral methods (ref. 35, for example) can account for such effects on R 0

if the region of transition from laminar to turbulent flow is specified. Since all the orig-

inal data points and their identification are available in reference 21, only shaded bands

are used herein to represent the data.

The results shown in figure l(a) indicate that none of the theories predict the cor-

rect trends with Tw/Taw over the entire range of this temperature ratio, which is a

direct index of the magnitude of surface heating. The Van Driest and Coles theories pro-

vide the best overall predictions; however, these predictions are somewhat below the data

for the range 0.4 < Tw < 1.0 and considerably above the data for Tw < 0.2. The
Taw Taw

Spalding-Chi theory underpredicts the data by 20 to 40 percent for 0.2 < Tw < 0.6, while
Taw

the Sommer-Short theory gives the poorest indication of trends with Tw/Taw, the pre-

dictions varying from 40 percent below to 20 percent above the data for a range of

Tw/Taw from 1.0 down to 0.15.

As mentioned previously, these theories can be used to predict heat-transfer rates

if the Reynolds analogy factor 2Nst/Cf and recovery factor _ are known or specified.

Predictions of NSt from the same four theories are compared with heat-transfer mea-

surements in figure l(b) where the values assumed for these two factors were

NSt theo 1.16 and _ = 0.9.

and cones for 4.9 < <--M e -- 7.4 and

lished in ref. 21) and Cary (ref. 92).

The experimental data were obtained on flat plates

3000 < R 8 < 5000 by Mateer and Polek (first pub-

The assumed value of 2Nst/CI/= 1.16 is repre-

sentative of subsonic and moderately supersonic data for Tw > 0.6 as indicated by
Taw

Cary's recent survey (ref. 93). The assumed value of the recovery factor is typical of

data for turbulent boundary layers for a wide range of conditions.

The heat-transfer results (fig. l(b)) indicate that predictions of the Van Driest and
/

Coles are considerably above the data (by as much as 40 percent for the smallertheories

values of Tw/Taw). The Spalding-Chi theory predicts-- the trend with Tw/Taw better

than the other theories but generally underpredicts the mean of the data. The Sommer-

Tw
Short theory gives good agreement with the mean of data down to - 0.4 and then

Taw

increasingly overpredicts the data as T w/Taw is decreased further.

Comparison of figure l(b) with figure l(a) therefore indicates large inconsistencies

in the predictions obtained by the same theories for heat transfer and skin friction.

Recent direct measurements of both skin friction and heat transfer on a flat plate for

T w
-- = 0.32 and for M e -- 6.8 and Me = 7.4 (ref. _.1) indicate that the Reynolds analogy
Taw
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factor may be more nearly 1.0 for these conditions. Measurements made on sharp slen-

der cones at Mach 5 (ref. 94) indicate that for Tw < 0.5, the Reynolds analogy factor
To

decreases below values of approximately 1.2 as the temperature ratio is decreased.

Cary's recent survey (ref. 93) also indicates a possible trend, particularly for nozzle-

wall flows, of the Reynolds analogy factor decreasing to values nearer 1.0 when Tw/Taw

is decreased and the Mach numbers are large. It is therefore of interest to determine if

the heat-transfer predictions by the C.T. methods are improved by the use of a value for

(2Nst/C_theo than 1. which based on low Mach numberof 1.0 rather 16, was primarily

Tw
data with -- > 0.8. The resulting predictions for the heat-transfer data of figure l(b)

Taw

are shown in figure l(c), where the skin-friction results of figure l(a) are superimposed

for comparison. The main conclusion from figure l(c) is that the predictions of heat

transfer and skin friction are now reasonably consistent for each of the four theories

used. This consistent set of predictions favors the use of Reynolds analogy factors near

1.0 for these conditions. Two other results of interest should be noted. First, the Coles

theory provides the best correlation of the data in terms of the minimum spread in devia-

tion at a given Tw/Taw. Second, the Spalding-Chi theory gives the best prediction of

trends with Tw/Taw , although the total spread in the percent deviations from this theory

are large. Presumably this defect in the Spalding-Chi theory could be remedied by

reevaluating the empirical function F R (see eq. (35)) for the present data. On the other

in the observed and predicted trends with Tw/Taw for thehand, the large discrepancies
#

Coles theory may not be easily corrected, in view of the basic limitations of transforma-

tion theory indicated in the previous section.

The relative simplicity of the C.T. theories as compared with more advanced

methods insures their continued use for, at least, preliminary estimates of surface shear

stress and heating. However, when more reliable values of these surface quantities are

required, particularly for small values of Tw/Taw , large local Mach numbers, and large

pressure gradients, the I.M. and F.D. methods must be used. These latter methods must

also be used when more detailed information is required (such as local boundary-layer

thicknesses and profiles and the effects of large upstream gradients on these local char-

acteristics). A typical situation where such detailed information is necessary is for inlet

design problems as indicated in paper no. 19 of reference 3.

Other limitations of the C.T. methods are the difficulties encountered in their

application to three-dimensional flows and flows with more complex boundary conditions

such as external vorticity and surface mass transfer. The transformation methods have

been extended to flows with mass transfer (refs. 89 and 90, for example), but the same

limitations of moderate heat transfer, pressure gradients, and Mach number still apply.
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In the F.D. methods discussed in the next section, none of these limitationsapply. In the

I.M. approaches, the limitationof moderate pressure gradients is not too significant,

even when C.T. skin-frictionlaws or transformation theory are used.

I.M. and F.D. Methods Applied to Adiabatic Flows With Arbitrary Pressure Gradients

Predictions for Cf, 0, and H* are compared with data from two experimental

investigations that have been used as test cases for several theoretical methods. The

two experimental investigations are by Winter, Rotta, and Smith (ref. 95) and by

McLafferty and Barber (ref. 96). Predictions from nine different theories are compared

with these data. The theories and line symbols to be used for the predictions are shown

in figure 2.

Winter, Rotta, and Smith (ref. 95).- In reference 95 experimental data for velocity

profiles and skin friction on a waisted body of revolution for values of M_o from 0.57

to 2.8 were obtained. The velocity profiles were based on pitot-pressure surveys, the

measured wall static pressures with ep/Sy = 0 apparently assumed, and an assumed

quadratic relation between static temperature and velocity. Small razor blade "scoops"

which functioned as Stanton tubes provided data for the skin friction. The free-stream

test Reynolds number based on the 5-foot body length was maintained approximately con-

stant at 10 × 106. Comparisons are shown herein only for the data at the highest free-

stream Mach number of 2.8. For this test condition there was a favorable pressure gra-

dient up to about the 24-inch station followed by an adverse pressure gradient to

x = 45 inches; then the pressure was approximately constant to the end of the body.

The predictions and data are shown for skin friction in figure 3(a) and for _ and

H* in figure 3(b). Note the wide disparity between the various predictions for Cf. The

F.D. results of reference 15 are generally the highest while the results of reference 91

(utilizing the formal transformation) are generally the lowest. The older I.M. approach

of reference 65 falls in that separation was predicted on the aft portion of the body. The

methods that are in the best overall agreement with the Cf data are the I.M. approaches

of references 70 and 48 and the F.D. methods of Harris and reference 34.

The appreciable differences between the predictions for Cf by the F.D. methods

of Herring and Mellor (ref. 15) and Fish and McDonald (ref. 77) are evidently due to the

differences in numerical techniques since the eddy-viscosity relations are identical.

According to previous discussion of these methods, the Fish-McDonald procedure should

provide better accuracy because of the improved finite-difference expressions used for

the x derivatives. Hence, it could be speculated that the Herring-Mellor procedure is

more sensitive to the step size in the x-direction and if the Ax steps were too large,
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the procedure would give erroneous results, parUcularly in the large favorable-pressure-

gradient region for x > 42 inches. The large underprediction of the transformation-

integral approach of reference 91 may be associated with the complete reliance in this

method on the formal transformation, since the I.M. approaches of references 48 and 70

give fairly good predictions. On the other hand, the I.M. approach of Pinckney overpre-

dicts Cf by a large amount except on the aft portion of the body. The precise reasons

for this result would be difficult to determine because of the involved assumpUons of this

theory. Possibly the use of a flat-plate skin-friction relation or the formulation of the

shear-stress integral could account partly for the erroneous predictions. All the results

for Cf except those of references 34 and 91 are too high at the station x = 24 inches,

which in many of the methods was used as an input station because the first experimental

profile was obtained there and hence values of 8 and H* were available. (At this sta-

tion, the experimental R 8 is 2140.)

It is of interest to note that the F.D. methods of reference 34 were started with both

the experimental Cf and the outer part of the velocity profile as inputs so that the

experimental values of _ and H* were also matched reasonably at x = 24 inches

(see fig. 3(b)). In spite of this forced match at x = 24 inches, the computed skin fricUon

increased very rapidly up to the level of most of the other theoretical results. Apparently

the mixing-length model in this theory as well as the effective turbulent-flux models

present in most of the other theories result in predictions of skin friction that are incon-

sistent with the experimental velocity profile at x = 24 inches, which was generally

matched as an input. These results suggest that some relaminarization effects may have

been present in the boundary layer.

In an investigation of laminarization in a nozzle-wall turbulent boundary layer,

Back, et al. (ref. 97) found that when values of the parameter _ = _e due exceeded

U2e

2 × 10 -6, the heat transfer generally decreased to values below those typical of turbulent

boundary layers. Also when K > 1.3 × 10 -6, noticeable changes in velocity profiles

occurred in the law-of-the-wall region. Calculations by Julius E. Harris for the Winter-

Rotta-Smith body showed that K exceeded this latter value from about x = 17 inches

to x = 23 inches for the test at Moo = 2.8. The low observed values of skin friction as

compared with predictions in this region may therefore be partly caused by laminariza-

Lion of the boundary layer. Furthermore, this tendency towards laminarization may have

persisted downstream of the 23-inch staUon. The authors of this experimental invesUga-

tion (ref. 95) stated that the roughnesses (installed at 1.5 inches from the tip) were not

fully effective above Moo = 1.4.

Other factors that could account for the disagreement between most of the predic-

tions and the skin-friction data in the region 20 < x < 35 inches are errors in the data
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and effects of normal pressure gradients. This latter factor has not been accounted for

in either the theories or (apparently) the data-reduction procedures.

In the F.D. solution by Harris, experimental velocity profiles were not used.

Instead, the solution was s_rted at the tip with a similar laminar solution as the input,

and transition was initiated at x = 1.8 inches by "switching on" the eddy viscosity.

However, through the use of an intermittency function of x, the full value of e was not

utilized in the solution until x = 9 inches, so only from this station on would fully devel-

oped turbulent profiles be computed. Consequently, the values of 0 computed by Harris

and shown in figure 3(b) are higher than the data, as would be expected if laminarization

were present. These values of 8 are also higher than the results of other theories

which used the experimental _ at x = 24 inches as an input. On the other hand, pos-

sible reasons for the overprediction of 8 by all the theories for x > 35 inches

(fig. 3(b)) are not readily apparent. (The gross overprediction of H* by the older I.M.

method of ref. 65 again reflects a breakdown of that method.)

Another possible explanation for some of the discrepancy between predictions and

data for Cf (fig. 3(a)) is the effect of curvature on the turbulent-shear-stress term.

Bradshaw (ref. 98) and Rotta (ref. 99) have both indicated that this effect may be large.

To investigate this possibility, the mixing-length modification of Bradshaw (ref. 98) was

used to recompute the boundary layer for this test at Moo = 2.8 by the F.D. method of

reference 34. All inputs and boundary conditions of the original solution were retained,

but the mixing-length model of equation (20b) (as applied in eq. (32)) was modified

according to the formula (see ref. 98)

(40)

where l c is the new mixing length which accounts for the effect of curvature.

large longitudinal radius of curvature, lc reduces to the previous /u which is the

same function of y/5 and Hi* as described in reference 34. The quantity fl is

recommended as a constant by Bradshaw and was taken as 7 for the results shown in fig-

ure 3. Rotta (ref. 99) indicates that _ should be a function of Mach number, but that

function was not used herein.

In order to obtain physically realistic values of l c from equation (40), the limita-

tion that 0 --<l c =</c,e was imposed, where /c,e = 0.15. The lower limit simply pro-

hibits negative values of lc, which would give improper behavior to the eddy viscosity

for small positive values of rc, corresponding to large convex curvature and large

damping of turbulence. The upper limit avoids unrealistically large values of lc that

would otherwise be computed when r c is negative and 0fi/_y - 0 near the outer edge

of the boundary layer.

For very
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The results (fig. 3(a)) indicate that up to x = 27 inches, Cf was reduced only

slightly by using equation (40), but from there on it was generally increased appreciably

since the radius of curvature changed from positive to negative values (convex to concave

curvature) at x -- 27 inches and hence, the modified mixing length Zc was greater than

Zu from that region downstream. The improved agreement with the data downstream of

the minimum in Cf indicates that longitudinal curvature may have had some effect in

this region. Of course, this statement must be regarded as speculative, since some of

the other theories which did not explicitly include the curvature effect gave results in

equally good agreement with data in the region downstream of x = 44 inches (notably

the F.D. theory of Harris and the I.M. theories of refs. 70 and 48). The effects of longi-

tudinal curvature on 8 and H* according to these calculations were very slight, as

indicated by the results shown in figure 3(b). The effect of lateral curvature (not included

in all theories as indicated in fig. 2) has been determined for this case by Harris and by

Cebeci, et al., in reference 16. The effect of using r = r w + y cos c_ rather than

r = r w increased Cf by, at most, 15 percent.

McLafferty and Barber (ref. 96).- In reference 96 wall static pressures and pitot

pressures across the boundary layer and in the inviscid flow were measured on several

curved ramps with large adverse pressure gradients. The curved ramps were mounted

flush with the wall near the exit of a supersonic nozzle. No measurements of skin fric-

tion or static pressures across the boundary layer were made. However, the variation

in local static pressure across the boundary layer was accounted for in the data-reduction

procedure used to obtain the velocity and density distributions. (The stagnation tempera-

ture was assumed constant across the boundary layer.) This static pressure distribution

was assumed to be a quartic curve which matched the measured wall static pressure and

the local free-stream static pressure as determined from pitot-pressure measurements

outside the boundary layer. The quartic curve also satisfied the requirements that

(_P/_Y)w = 0 (see eq. (3))and that the derivatives outside the boundary layer "''8((-_)_and

\, ,-

_2P_ I match the values obtained from the pitot-pressure distributions. The use of this

procedure was presumably justified by improved values for the velocity and density, but

these improvements may have been partly negated by the use of Pw rather than Pe to

compute the reference velocity and density used in the evaluation of 5* and 0.

One set of experimental data was chosen from several available in reference 96

for comparison with theoretical predictions. This set of data was obtained at Moo = 3.0

on a circular arc compression ramp with r c = -6 inches. The point of tangency between

the ramp and the fiat floor of the wind tunnel was used as the input station for all the cal-

culations except those of references 65, 70, and 77. The experimental values of the

integral parameters at this station were 8 = 0.0161 inch, H* = 5.75, and R 6 = 2540,

390

I/I/I/I/I/lil/lililil tiiili I/IL



The predictions for 8 and I-I* are compared with the data in figure 4. Again

the older I.M. approach of reference 65 gives poor predictions. The values of H* from

the transformation-integral procedure of reference 91 also deviate considerably from the

data for x > 2 inches because of a near separation predicted by this theory and the

resulting effect on the form factor. Most of the other theories give good predictions (in

view of the uncertainties in the data, as mentioned previously) except for the values of 8

on the aft portion of the ramp as predicted by the I.M. approach of reference 70 and the

F.D. method of reference 34.

The failure of the I.M. method of reference 65 in this and the previous example is

believed to be caused primarily by the assumption used for the shear-stress integral and

the use of the Stewartson coordinate transformation which cannot provide the correct

transformation for the turbulent shear stress. This statement is supported by the much

improved results of the transformation-integral theory of reference 91 which used the

Coles transformation. This latter theory still fails to give satisfactory predictions, prob-

ably because of the inherent limitations of the transformation theory in large pressure

gradients (see previous discussion of C.T. methods).

The method of reference 34 has been used to determine the effects of two mixing-

length relations and different values of due/dx on 8, H*, profiles of F, and Cf. The

results are shown in figure 4 for three solutions identified by case number and symbol as

follows: (1) closed triangle, (2) open triangle, and (3) cross (+).

For case (1), equation (40) was used for the mixing length, and all boundary condi-

tions (namely, Ue, due/dx, and Pe) were obtained from the measured values of Pw as

given in reference 96. This solution gave good agreement with data for _ and H*

(fig. 4(a)) and reasonable agreement with velocity profiles (fig. 4(b)); however, it predicted

separation at x = 2.7 inches (fig. 4(c)).

Since separation did not occur in the experiment, case (2) was obtained with the

values of due/dx computed from Pe rather than Pw but with the same valuesinput
#

used for u e , and Pe (based on Pw). This solution gave considerably larger values of

Cf with no separation (fig. 4(c)), but the values of 0 were reduced (fig. 4(a)) and the

velocity profiles (fig. 4(b)) were too full at all x stations.

Cases (1) and (2) were both computed with the mixing-length relation of equation (40)

which, with the negative radius of curvature of -6 inches (ref. 96), increases the eddy

viscosity. The limitation of lc, e = O. 15, which resulted in improved agreement for the

data of reference 95 (shown in the preceding section), was also used for cases (1) and (2).

Thus, in order to determine if the curvature modification to the mixing length was too

large, case (3) was computed without this correction. The mixing-length relation of

equation (20a) was used with (//5)ma x = 0.1. The values of Cf were lower than for

case (2), but the velocity profiles, O, and H* were essentially the same. The effect of
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the curvature modification is therefore limited primarily to the values of Cf. This

result would be expected because the values of l/5 in the outer part of the boundary

layer were the same in all these cases, since /c,e = 0.1 or (l/5)ma x = 0.1 was used.
5

Predicted values of Cf from two other methods are also shown in figure 4(c).

These predictions are from the I.M. approach of reference 48 and the transformation-

integral method of reference 91. The trends from all the methods are similar. The

method of reference 91 predicts separation at about the same location as case (1) by the

method of reference 34.

The main reason for including this rather lengthy presentation of results obtained

with the method of reference 34 is to illustrate how various modifications to the eddy-

viscosity model and to the boundary conditions can be easily incorporated in the pro-

cedure. The general objective of using these modifications would be to determine, by a

trial and error process, the optimum models for the turbulent-flux terms. For this

example, such a process is limited because of the lack of Cf data and because the cor-

rect effects of normal pressure gradient cannot, as yet, be obtained from the theory.

Nevertheless, it can be tentatively concluded that the convex curvature increased the tur-

bulence intensity and Cf in this experiment as compared with a flat-plate flow. Also

the evaluation of due/dx from wall pressures rather than edge pressures gives better

agreement with velocity profiles and momentum thickness, but causes premature separa-

tion. The prediction of premature separation will be corrected when the normal-

momentum equation is included in the calculation. Obviously, further investigation of

these matters is required before a complete or reliable assessment of the F.D. mixing-

length methods can be made.

Profile Predictions for Nonsimilar Hypersonic Turbulent Boundary Layers

One further comparison is made as an example of the potential capabilities of the

F.D. methods. As mentioned previously in the section "Areas Where Significant Advances

Have Been Reported," experimental results and theoretical analyses (refs. 34 and 35)

indicate that turbulent boundary layers near the exit of hypersonic nozzles are different

in some respects from flat-plate turbulent boundary layers. One of these principal dif-

ferences is the relation between total temperature and velocity. When the molecular and

dT w
d_ 0, and -- = 0, the linear Crocco integralturbulent Prandtl numbers are 1.0, _ = dx

_'=F

is obtained (see eq. (15)). However, typical data obtained near the exit of hypersonic

nozzles where locally d._ = 0 give more nearly the quadratic relation
dx

(41)
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_ F 2 (42)

Two typical sets of data that exhibit this approximate relation are shown in figure 5.

Pitot-pressure and total-temperature measurements with calibrated probes and the

assumption of constant static pressures were used to compute the velocity ratio in both

experimental investigations. The data of Harvey and Clark were obtained near the exit

of a Mach 18 contoured nozzle and have been reported in references 34 and 35. The data

of Perry and East were obtained in a conical nozzle (ref. 29), and therefore the local

values of dp/dx are somewhat larger (negatively) than in the Mach 18 contoured nozzle.

Solutions by the F.D. methods of Harris and of Bushnell and Beckwith (ref. 34) were

obtained for comparison with these data. The solution by Harris was obtained for a flat

plate (d-_ = 0) with the boundary conditions along the entire plate taken the same as the

local conditions at the survey station near the exit of the Mach 18 contoured nozzle. Since

the value of the "static" Prandtl number Npr,t was 0.9 (constant) for this solution, the

resulting variation of _ with F is somewhat below the linear variation. The reason

for this result is immediately obvious when it is realized that for flat-plate profile rela-

tions like that of equation (41), a value of Npr,t = 0.9 corresponds to a value for the

total Prandtl number Npr,T of slightly greater than 1.0 over most of the boundary layer

as shown in reference 34. The transport coefficient e/Pr T for H (or, in effect, _)

is then slightly less than the transport coefficient e for _. Consequently, by inspec-

dT w
tion of equations (12) and (13), it can be seen that with dp = 0, = 0, and Npr = 1,dx dx

the y profiles for _ must be somewhat less full than the y profiles for F at the

same x station. It then follows that for the same y the value of _ must be less

than F. Therefore, the variation of _ with F must be below the linear curve.

In the same way it can be seen that a negative pressure gradient has a direct effect

in accelerating or '_ulging" out the profile for F and it might be expected that F

would then be much greater than _ at the same y. However, the relative increase in

the values of F over those of _ is not very large because of the tendency for the

profile to "follow" the F profile as a result of the relation _ = F2 + _ - hw Thus for

H e - h w

turbulent Prandtl numbers near 1.0, the variation of _ with F relaxes rapidly back

towards the linear variation after the disturbing influence of a pressure gradient.

(Results in ref. 34 showed that the effect of negative values of dTw/dx on _ are anal-

ogous to the effect of negative dp/dx on F.) Nevertheless, the experimental data for

nozzle-wall boundary layers indicate that the effects of these large gradients, particularly

in the outer part of the boundary layer, can persist far downstream.
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For the first solution by the method of reference 34 (see solid curve in fig. 5),

Npr,t = 0.9 was used and the complete upstream distributions of pressure and wall

temperature for the nozzle flow (see ref. 34) were used as inputs. The results show

that this nonsimilar F.D. method duplicates to a surprising extent the experimental

findings. However, within the inner part of the boundary layer for F < 0.7, the theoreti-

cal values of 0 are still too large. The only way to correct this discrepancy is by the

use of larger values of Npr,T which reduce the transport coefficients for H relative

to the values for F. --Acc°rdingly' when _Npr,T in the outer part of the boundary layer

increased to 1.5 (so that Npr,t = 0.5), good agreement with data all the way acrosswas
%

the boundary layer was obtained as shown in figure 5 by the second solution from the

method of reference 34.

The distributions of turbulent Prandtl numbers as used in these solutions are shown

in figure 6. Note that when Npr,T = 1.5 in the outer part of the boundary layer, the

corresponding values of Npr,t (the static turbulent Prandtl numbers) as computed back

from results of the solution with the equation (obtained from ref. 34)

Ue / "e01 Ww 8_/8y) Pr,W

Tt'e / (43)

Npr,t = u2/2He _F2/_y

1 - Npr,T T w a_/ay

Tt,e

are approximately 0.6 + 30 percent for y/5 > 0.05. These values of Npr,t are in

agreement with incompressible data (ref. 100, for example). For the range of

0.02 < y/5 < 0.05, the values of Npr,t are physically unrealistic because of the singular

nature of equation (43) in this region. Apparently, this singular behavior can be avoided

by using Npr,t as the input function.

As indicated in previous discussion of the C.T. methods, the Reynolds analogy fac-

tor is required to obtain heat-transfer predictions with these methods. In view of the

differences just noted in the profiles for nozzle walls and flat plates, it is of interest to

values of Reynolds analogy factor 2Nst/C f obtained from the F.D. solutions.compare

From the solution for the flat plate (Harris) and the first and second solutions for the

Mach 18 nozzle wall by the method of reference 34, these values of 2Nst/C f were,

respectively, 1.18, 1.09, and 0.92. _ae recovery factor used in all these solutions was

= 0.89. Since the general relation for Reynolds analogy factor at a fixed x is (for

constant c_
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2Nst

Cf

I+Y-:/m2 Tw

Npr'w 1+_ 7- IM 2 Tw\dF/w

-T

(44)

it is clear from figure 5 that the decreasing values of 2Nst/Cf as just quoted are

caused by the effects of pressure gradient and the increase in Npr,T on the relation

between ff and F. Finally, the experimental values of 2Nst/C f for nozzle-wall

boundary layers might then be expected to be somewhat lower than the values for flat-

plate flows. Although the scatter in the data is large, the survey by Cary (ref. 93) indi-

cates that most of the values of 2Nst/C f for the nozzle-wall data are somewhat smaller
than the flat-plate data.

In this section some examples of how the F.D. methods can be utilized to provide a

better understanding of observed phenomena in the development and relaxation of tur-

bulent boundary layers under the influence of various upstream and local conditions have

been given. The now well-known differences in the relation between total temperature

and velocity that occur in nozzle-wall boundary layers and flat plates can be partly

attributed to the upstream effects of pressure and wall-temperature gradients and the

deviations of turbulent Prandtl numbers from unity. The same effects can cause smaller

values of Reynolds analogy factor for nozzle-wall boundary layers than for flat plates.

CONC LUDING REMARKS

Comparisons of predictions with experimental data for supersonic and hypersonic

turbulent boundary layers by three main categories of approaches have been given in this

review. These three categories were designated herein as integral methods (I.M.),

finite-difference solutions of the partial differential equations (F.D.), and correlation

techniques (C.T.). Four typical methods in each category were described in sufficient

detail to indicate some of the basic differences in the methods and to thereby provide a

basis for the discussion of possible causes of differing predictions. The intent was also

to illustrate briefly the wide diversity of assumptions that have been utilized to close the

system of governing equations. This closure problem stems from the lack of basic

knowledge concerning the relations between the turbulent-flux terms and the mean flow

quantities.

Comparisons of experiment with predictions from the C.T. methods (such as the

reference-temperature methods and the direct application of transformation theory) for

skin friction and heat transfer on flat plates have shown that none of the methods give

accurate predictions for the entire range of the ratio of wall temperature to adiabatic
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wall temperature. The trends with this temperature ratio are perhaps better predicted

by the Spalding-Chi method than by other methods considered in this category. Since

these essentially empirical methods are severely limited in some respects (such as by the

applicability to simple flat-plate-type flows only, the lack of information regarding the

boundary-layer profiles, and remaining questions concerning the appropriate Reynolds

analogy factor to use), the more advanced methods must be applied to flows with large

arbitrary pressure and wall-temperature gradients, large heat transfer, and hypersonic

Mach numbers.

For large arbitrary pressure gradients, the comparisons between theoretical

results and experimental data for skin friction and integral thicknesses as shown herein

and as available in the cited references have indicated that reasonable predictions can be

obtained with some of the recently developed I.M. and F.D. methods. Possible reasons

for the poor predictions of some methods have been suggested. For example, one of the

earlier I.M. methods utilized a version of transformation theory that has since been

shown to lack generality. In certain of the other I.M. methods, the assumptions used to

evaluate the shear-stress integrals and other relations between integral quantities were

not sufficiently general and may have contributed to the discrepancies obtained.

On the other hand, poor predictions by the F.D. methods could be traced directly to

the finite-difference formulations and associated limits on step sizes or on the eddy-

viscosity formulations. On balance, it appears that the F.D. methods offer significant

advantages for future development and application. One of the main advantages of the

F.D. methods is the conceptual simplicity that can be utilized in the formulation of the

turbulent-flux terms. This conceptual simplicity eases the burden of identifying and

adjusting the causes of poor predictions. By the use of this "numerical-experimentation"

approach, the knowledge of basic turbulent mechanisms could ultimately be improved.

One such mechanism considered in this review in a very preliminary fashion is the effect

of longitudinal curvature on the turbulent shear stress. However, the preliminary results

have indicated that a complete and reliable assessment of the F.D. methods is not yet

possible because of limitations in the experimental data. Also, for application to flows

with large adverse pressure gradients, the normal-momentum equation should be

included in the theory.

Application of F.D. methods to hypersonic nozzle-wall boundary layers with large

heat transfer and large gradients in pressure and wall temperature upstream of the local

station of interest has shown that these "upstream history" effects can persist for large

distances downstream. The local velocity and temperature profiles as well as Reynolds

analogy factors can then be appreciably different from those in flat-plate-type boundary

layers with no upstream history. Again, because of the conceptual simplicity of the F.D.
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methods and the relative ease of incorporating modifications that are based on physical

processes, the basic reasons for the differentboundary-layer characteristics for these

flows could be identifiedwith some certainty.
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DISCUSSION

HARRY A. DWYER, University of California, Davis: You mentioned that you

thought the eddy-viscosity terms might depend on normal pressure gradients

somewhat, and I was wondering whether you were considering thin turbulent

boundary layers, relatively thin?

BECKWITH: You may have misinterpreted my remarks there. I think

the eddy viscosity, that is the model for turbulent correlations, will depend
on the curvature of the streamlines, and this goes back essentially to the

idea of stability of flow in concave and convex flows.

The normal pressure gradient would presumably be incorporated by means

of a normal-momentum equation in one form or another.

STANLEY G. RUBIN, Polytechnic Institute of Brooklyn: I would like to

comment on two things. First, it seems to me that the essence of this type of

turbulence analysis lies in the model for the Reynolds stress and not in

whether you use a finite difference or an integral technique. It seems to

me that based on some of the incompressible theories that have been derived

recently, for example, the invariant modeling of Donaldson or the energy-

type analysis of Bradshaw, that other effects that have not been accounted

for in the eddy-viscosity or mixing-length models that you have mentioned,

lik_e triple correlations, may have significant effects, and more sophisticated

modeling techniques could account for some of the deviations shown in the

results presented here. It may in fact be that this is the way that one has

to go if significant improvements are to come about.

Secondly, you show some data for Mach numbers of 19, and it seems to me

that once you get into the hypersonic range you really have to ask yourself

the question whether or not density fluctuations and viscosity fluctuations

are important. It seems to me that they would be very signficant in the

hypersonic flow range.

BECKWITH: Let me consider your last comment first. We certainly

have asked ourselves these questions. In fact, we have played around a little

bit with modifying the mixing-length expressions to account for the density

fluctuations (see AIAA Paper no. 69-684), but we felt that we were getting too

far into the unknown there to be sure of what we were doing, so we haven't

done much more with that, but they do have to be considered.

Now, as far as the use of the turbulent kinetic energy equation or some

of the other more exotic approaches are concerned, again I feel here that

there are so many unknown correlations like the third-order correlations you

mentioned, particularly as far as compressible flow is concerned, that even

though we can bring in these equations we just introduce more and more

unknowns. Consequently, you are no better off than if you use modified

mixing-length expressions, which can be done successfully at least in first

order, and often can supply a good practical answer without all the
difficulties of the more exotic approaches.
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RAYMOND SEDNEY, Martin Company: In the written version of the discussion

that was held after the Langley meeting of a year ago, there was a statement

made concerning transformation methods. As I remember the statement (and I

don't think it was challenged), it was that the transformation type of

approaches can't possibly work above, say, roughly Mach 5. Do you have any
comment on that?

BECKWITH: I think I would probably have to agree with it, primarily

because in transformation techniques when you try to apply them to

flow situations above Mach 5 you are getting into conditions where the heat

transfer may be large, and where the normal pressure gradients as well as

longitudinal pressure gradients could be large, and transformation theories

as yet can't handle these matters very well, just because in the incompres-

sible flow we don't have the same physical situation present. Now, somebody

might take exception to that, but that is my own personal opinion.

ARTUR MAGER, Aerospace Corp.: I would like to take an issue with that

last statement. I do not see any reason why an appropriate transformation

could not be devised which would take into account all these effects which

you just mentioned.

BECKWITH: Well, like I say, I think the basic difficulty is that in the

typical incompressible flows you don't have a large heat transfer present, at

least physically, and therefore you have a difficult time finding a suitable
model to transform to.

Also, you may have to consider three-dimensional flows, wall blowing,

separation, etc. The incompressible flows are there, at least in certain

limited cases, but they may not always provide the range of variables that you
are interested in, so the transformation methods are limited.

ALFRED GESSOW, NASA Headquarters, Washington, D.C.: You mentioned at

the conclusion that you really couldn't evaluate the theories too well until

we get better experimental data, and there is certainly a need for that. In

view of my impression that the kind of experimental data that you get from

the tunnels is dependent upon tunnel noise effects that come off the walls

and could affect transition by the amount of turbulence you have, what kind

of data do we now have that we could trust and use as a standard against

which to compare theory?

BECKWITH: As far as the effects of tunnel noise itself are concerned,

that is very important, as you know, on transition. I think when

you are looking at an established turbulent boundary layer the effects are,

hopefully, secondary on the structure of the turbulent boundary layer
itself.

I think the emphasis, as far as getting data at the present time is

concerned, needs to be on measuring the fluctuating properties of turbulent

flow and how they relate to the mean flow and how the correlations behave,

and we can do this in the wind tunnels better than anywhere else.

\
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GESSOW: You say the correlations between various sources of experimental

data are much better for turbulent skin friction than they are for the transi-

tion, so you do have a pretty good feeling, I would say, for the experimental

data that you did use. You feel then that they can be used as a fair standard.

Is this correct?

BECKWITH: You mean the direct measurements of skin friction -- is that

what you are referring to there?

GESSOW: Yes.

BECKWITH: No, I don't think I really meant to imply that. What I meant

was, we can continue to get detailed measurements in the boundary layer on

nozzle walls, for instance, that is of profiles as well as the skin friction

and heat transfer, just as well as anywhere else, in fact, somewhat better in

certain cases.

MAGER: I noticed in those comparisons between the various methods that

you made, you have compared a number of transformation methods, for example,

Reshotko and some of the newer ones. The issue that bothers me is that you

have not really indicated the validity of the specific transformation because

you have not mentioned the incompressible method which is used in each case.

In other words, when the transformation of Reshotko and Tucker failed, it is

not clear whether it failed because of the nature of the transformation or

whether it failed because of the specific incompressible method that was used

with it. After all, the incompressible method could conceivably mispredict

the occurrence of separation.

BECKWITH: Wait a minute, maybe you misunderstood there. The older

Reshotko-Tucker integral methods did not rely on any physical transformation.

There was no physical transformation involved in the sense that Coles' method

is physical as opposed to a Stewartson type transformation of independent

variables. All they did was to assume a certain set of functions for the

profiles of velocity and enthalpy in the Stewartson plane and use modified

incompressible relations for skin friction and the shear-stress integral.

MAGER: I don't know which one you referred to, but the original

Reshotko-Tucker method does employ transformation.

BECKWITH: Well, I'd have to look this up. A general transformation

could have been involved if they do use Coles' transformation theory and

integral methods, yes. I'm not sure at the moment just what transformation

was involved there, so I can't answer the question.

MICHAEL S. HOLDEN, Cornell Aeronautical Laboratory, Inc.: In connection

with the measurements on tunnel walls, have you established from the theoreti-

cal analysis a criterion for suggesting when these measurements are compatible

with flat-plate measurements? Can this be expressed in terms of the boundary-

layer thickness at the end of the nozzle?
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BECKWITH: In figure 5, we were showing a situation where there

were definitely differences between nozzle-wall boundary layers and

flat-plate boundary layers. This is just one particular way of plotting

the total temperature against the velocity, but actually the nozzle-wall

boundary layer turns out to be a useful thing if you are interested in trying

to compute the effect of previous history. If you have a nonsimilar method,

which the finite-difference approach would be, this presumably would be and

can be incorporated in the method. The thing we really need to know is what

is the relation between the fluctuating quantities within the turbulent

boundary layer itself and the mean flow, whether it be a nozzle-wall boundary

layer or a flat-plate boundary layer.

HENRY McDONALD, United Aircraft Research Laboratories: I'd just like to

answer Dr. Mager's comment on the method of Reshotko-Tucker. I believe the

figure you presented was pulled from a Langley presentation*_ and if that is

true, then the calculation was performed using essentially the transformation

of Mager, and in the same paper that you pulled that calculation from, there

is another calculation which showed a very simple modification of the basic

incompressible method which in conjunction with the tranformation of Mager

performed much, much better. So, Dr. Mager's point was that perhaps the

error was in the incompressible method, and that indeed was justified by

subsequent calculations.

BECKWITH: A very good point. Actually, you have to remember, here, the

situation we were comparing it with was adiabatic, no heat transfer, and that

can be handled by the transformation.

WILLIAM J. EVANS, Grumman Aircraft Engineering Corp.: This question is

a little bit outside the realm of theoretical work in boundary layers itself,

but I would be very much interested if, based on the fact that some of your

curves show a range of accuracy, whether one can on perhaps even simple wind-

tunnel models estimate the range of accuracy to which we are currently esti-

mating skin frictions, since we are putting together wave drag plus I don_t

know what else, and come up with a complete correlation of the drag force,
and I have not seen this done.

When you don't exactly agree with wind-tunnel data, people will say that
the method is no good, and yet the skin-friction estimate itself is a basic

weakness in the elements we have to put together. Is anyone working on try-

ing to estimate ranges of accuracy of the skin-friction estimate by complete
models?

BECKWITH: Maybe someone would care to comment on that. I don't think

I could add much to it. What about Ed Hopkins back there?

EDWARD J. HOPKINS, NASA Ames Research Center: I can say a few remarks

with regard to our data which showed up in figure i.

*Compressible Turbulent Boundary Layers. NASA SP-216, 1969.
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We made direct measurements using a skin-friction balance. Beckwith, in

his paper, gives reference to our skin-friction summary paper in which the

accuracy that we estimate for skin friction is given as about ±5 percent.

The other broader question of when you combine airplane components

how much effect does interaction and accuracy of skin-friction measurements

have on the final configuration estimated drag is something I can't answer.

HOLDEN: I noticed measurements of skin friction up to Mach 8; was any of

this the data obtained by Wallace at CAL?

BECKWITH: Yes, Wallace's flat-plate data was included.

HOLDEN: I just want to comment that the skin-friction gages Jim Wallace

used to obtain his measurements are believed accurate to within 5 to

i0 percent.
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FINITE-DIFFERENCE ANALYSIS OF THE COMPRESSIBLE

TURBULENT BOUNDARY LAYER ON A BLUNT SWEPT SLAB

WITH LEADING-EDGE BLOWING

By James L. Hunt, Dennis M. Bushnell,

and Ivan E. Beckwith

Langley Research Center

SUMMARY

A finite-difference method has been developed to solve the equations for compres-

sible turbulent boundary layers on swept infinite cylinders. Predictions by the method

have been compared with experimental data on a 60 ° swept, blunt, slab configuration with

and without leading-edge blowing. The test conditions were a stream Mach number of 8

and a range of stream Reynolds number based on leading-edge diameter NRe,_ from
0.92 x l05 to 9.3 x 105 .

Three different approaches to the formulation of eddy-viscosity models for three-

dimensional boundary layers were considered. Two of these formulations were used in

the numerical solutions. Nonsimilar solutions for laminar flow were obtained by setting

the eddy viscosity equal to zero.

Comparisons of the resulting predictions for heat transfer, surface streamlines,

Mach number profiles, and boundary-layer thickness with the experimental data have

indicated that for NRe,_ -> 2.6 x 105, the leading-edge boundary layer was turbulent and

that laminarization apparently occurred as the flow expanded around the leading edge.

At the higher test Reynolds number of 9.3 X 105, transition back to turbulent flow was

observed on the downstream part of the slab. Both eddy-viscosity models gave satisfac-

tory predictions of the turbulent flow provided the mixing length in the outer part of the

boundary layer was taken as 0.05 of the boundary-layer thickness. This fraction is gen-

erally larger on flat-plate turbulent boundary layers where values up to 0.10 have been

used. The smaller values of the ratio required to obtain agreement between theory and

the present data suggest that the level of turbulence in the present three-dimensional

boundary layers was small compared with flat-plate flows at high Reynolds numbers.

The presence of low turbulence levels in the leading-edge boundary layers of these

tests was also consistent with the apparent laminarization phenomenon since the value of

the parameter that characterizes the onset of laminarization was an order of magnitude

below the critical levels observed for laminarization in two-dimensional flow. The small

value of this parameter suggests that the turbulent boundary layer on the leading edge was

highly susceptible to laminarization as would be expected if the initial turbulence levels

417



were small. The laminarization-like behavior andthe subsequenttransition were inde-
pendentof leading-edgeblowing.

INTRODUCTION

The boundary layers on large lifting vehicles are predominantly turbulent and three

dimensional in nature. For supersonic cruise vehicles, the accurate prediction of fric-

tional drag is essential. As the flight Mach numbers are increased above approximately

3, reliable predictions of heat transfer also become important. On windward and leading-

edge regions where passive or active cooling systems are required, the accurate predic-

tion of heating is critical.

Calculation procedures by both integral and finite-difference methods for two-

dimensional, compressible, turbulent boundary layers are now well developed, and further

advancements depend on more detailed and accurate data. (See paper 18 of this compila-

tion.) The finite-difference procedures can be extended in a straightforward manner to a

particular class of three-dimensional flows. This class of flows may be designated as

quasi two dimensional, since the governing equations can be expressed in terms of only

two independent variables. The turbulent boundary layers on sharp cones at angle of

attack and on infinite cylinders at yaw belong to this class if transition from laminar flow

has occurred far upstream of the region of interest. These flows may exhibit large three-

dimensional effects since the velocity vector within the boundary layer may have large

components normal to the external inviscid streamline. The boundary-layer velocity com-

ponents in this direction are generally referred to as simply the cross flow.

Previous methods developed for the calculation of compressible turbulent boundary

layers of this quasi-two-dimensional class, as well as more general three-dimensional

flows, were integral methods in which the assumption of small (or zero) cross flow within

the boundary layer was used (refs. 1 to 5). A finite-difference procedure for solving the

general equations for incompressible turbulent boundary layers without the small-cross-

flow assumption has been developed by Nash (ref. 6). The small-cross-flow assumption

requires that the magnitude of the velocity normal to the inviscid streamlines and the

derivatives in that direction are small. With this assumption, it follows that the compo-

nent of the surface shear normal to the inviscid streamlines is small and can have no

effect on the streamwise flow which develops independently of the cross flow (see ref. 7,

for example). The Reynolds stress in the streamwise direction is then independent of

the cross flow, and two-dimensional models of the Reynolds stress are directly applicable.

The assumption of small cross flow is more generally valid for turbulent flows than

for laminar ones, as shown by the results of r_ference 5. However, for some conditions

such as large streamline curvature in the cross-flow direction and large surface blowing,
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the cross flow in turbulent boundary layers will be large. The critical problem is then

the formulation of models for both components of Reynolds stress that will properly

account for the three-dimensional nature of the flow.

In order to study this problem, the finite-difference procedure of reference 8 has

been extended to include the spanwise momentum equation for swept infinite cylinders.

The computational advantages of two independent variables are thereby retained, while

the boundary layer may have large cross-flow components. Although the computations

are not done in streamline coordinates, the flow is computed in complete detail and the

only restrictions are those arising from the assumed models for the components of the

Reynolds stress in the chordwise and spanwise directions and for the turbulent flux of

enthalpy.

The purpose of the present paper is to evaluate this procedure by comparison with

experimental data on a 60 ° swept slab with and without homogeneous blowing at the leading

edge. The test conditions were a stream Mach number of 8 and stream Reynolds num-

bers, based on leading-edge diameter, from 0.92 x l05 to 9.3 x 105. Several solutions

for test Reynolds numbers of 2.6 x 105 and 9.3 x 105 have been obtained with various com-

binations of two eddy-viscosity models and different mixing-length functions. The results

are compared with measurements of wall heat transfer, oil flow lines (representing sur-

face streamlines), Mach number profiles, and boundary-layer thickness. The region of

special interest is just downstream of the blunt leading edge where the boundary-layer

profiles are far from equilibrium because of the upstream conditions of blowing and large

cross-flow pressure gradients.

SYMBOLS

A area

A* function of blowing parameter (see ref. 8)

ai,bi,ci,di,ei,f i temperature coefficients in heat-balance matrix (30)

 ov)w
B normalized blowing rate, _e

c specific heat of model material

Cp

Cf

specific heat at constant pressure

rw

skin-friction coefficient, _PeUe2
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D/Dt

d

substantial derivative for time steady flow,

leading-edge diameter

G eddy-viscosity function defined by equation (19)

gi

H

h

constants in heat-balance matrix (30)

total enthalpy, h +
u2 + v 2

static enthalpy

h* heat-transfer coefficient

k molecular thermal conductivity

L reference length

mixing length (eqs. (8) and (9))

M Mach number

_n

Npr

N Pr ,T

NRe,s

NRe,_o

Nst

mass flow rate per unit area

molecular Prandtl number, Cp_..___
k

turbulent Prandtl number based on static enthalpy, v'u__' _h/_y
v'h' _/ay

Ps2_e L

reference Reynolds number, Ps

free-stream Reynolds number based on leading-edge diameter,

h*

Stanton number, PeUe(haw _ h i

exponent in transformation (eqs. (26))

P pressure
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q local velocity vector, _u2 + w 2

R ideal gas constant

distance along an inviscid streamline

T absolute temperature

t time

u,v,w velocity components in x-, y-, and z-directions (fig. 1)

p'v'

V volume

x,y,z

Ot

Ay

Cartesian coordinate system (fig.I),also coordinate system used in heat-

conduction problem (see fig.8)

permeability, ft 2

boundary-layer thickness, usually evaluated at the point where

wall thickness at thermocouple stations on slab

AY wall thickness of porous leading edge

eddy viscosity

e* emissivity

K

A

angle between z-coordinate direction and local velocity vector

eddy thermal conductivity

leading-edge sweep

molecular viscosity
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_,7/ transformed coordinate system (eqs. (26))

P mass density

Boltzmann constant

shear stress

Subscripts:

aw adiabatic wall

C coolant conditions inside porous leading edge before injection

e local "edge" of boundary layer

g

m

gas

model material

max maximum

min minimum

n direction parallel to surface and normal to local inviscid streamline

initial condition at time zero

direction parallel to the surface and parallel to the local inviscid streamline

r local reference condition, may be either wall or edge

stt_gnation line

T turbulent

t total

W wall or outside surface of model
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x,y,z in the x-, y-, or z-directions

oC free-stream flow in tunnel

A bar over a symbol indicates a mean quantity. A prime indicates a fluctuating

quantity.

ANALYTIC METHOD

Numerical solutions to the partial differential equations for the boundary layer on

swept infinite cylinders are obtained by an implicit finite-difference procedure. The

method of reference 8 for two-dimensional and axisymmetric flows is extended to swept

cylinders by including the spanwise momentum equation. The Reynolds stress terms in

the momentum equations are formulated by the use of eddy-viscosity concepts. The

turbulent flux of static enthalpy is related to the Reynolds stress by the turbulent Prandtl

number.

The formulation of models for the eddy viscosity in three-dimensional boundary

layers is of primary concern herein. Two different models for the eddy viscosity are

utilized in the calculations: (1) the "invariant turbulence" model in which the total shear

is treated as a vector and the eddy viscosity is assumed independent of direction and

(2) Lettau's vorticity-transfer hypothesis (ref. 9) in which the change of vorticity along

an eddy trajectory is expressed in a general vector form.

Boundary-Layer Equations

The coordinate system for the idealized flow model is shown in figure l(a). The

instantaneous flow variables in the general conservation equations are divided into mean

and fluctuating parts and the Reynolds averaging process is applied. The following equa-

tions are then obtained after the higher order terms are neglected according to the usual

order-of-magnitude analysis for thin boundary layers:

Continuity

-
--o

Chordwise momentum

Spanwise momentum

D-_-- Ox _-P

D--t-= _ - _ v-'_Tw,

(2)

(3)
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Total enthalpy

This equation may be written in either of two forms which, to the first order, are equiva-

lent. Written in terms of the total enthalpy flux, this equation is

-DH 0 k aH _v'H' +_" + (4a)
D_=EY ' @Y _r @Y 2

The alternate form is obtained by using the static enthalpy in the transport terms to give

_DHD_T= _Y0_ _]_h P v'h-'-7- puv'u'--7- P_V'W' + _ _'u2 + _2-)12 (4b)

In this latter form, turbulent "dissipation" terms appear (the third and fourth terms

within the brackets) which have no counterpart in low-speed flows. On the other hand,

equation (4a) is directly analogous to the energy equation for low-speed flow if H is

replaced by h and if the viscous dissipation term (the last term within the bracket) is

neglected. Neglecting this term would be an acceptable approximation for turbulent

boundary layers except near the wall.

Before equations (1) to (4) can be solved, expressions must be supplied for the

Reynolds stress or turbulent shear terms in the momentum equations and the turbulent

flux of enthalpy in the total=enthalpy equations. The approach used in the present method

is to model these terms as functions of the mean-flow variables.

Eddy Diffusivity Coefficients

The concept that the Reynolds stress in turbulent flow is proportional to a momentum

exchange coefficient times the mean-flow velocity gradient was first proposed by

Boussinesq. This concept is based on an assumed analogy between eddy viscosity and

molecular viscosity.

then written as

The shear components in the chordwise and spanwise directions are

-- O,W p v-_w' = _" 0_, OW (5b)"9-- ,z

where the eddy viscosities in the x- and z-directions might in general be different.

the total resultant shear must be a vector quantity, its magnitude is written as
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In a similar manner the total heat flux in equation (4b) becomes

q= Cp _y Cp 0y+Cp 0y
C7)

Eddy-Viscosity Models

The simplest approach to the formulation of models for the Reynolds stress is based

on Prandtl's mixing-length hypothesis. For two-dimensional flow this hypothesis states

that

u' cc 1 _fi

I;t (a)
V' ccl

The turbulent shear and eddy viscosity are then

_T=--_v'u---:=_21_li._ _ (9)

=_21_ I (10)

where the quantity I is some characteristic length related to the size or scales of eddies

responsible for the flux of momentum in the y-direction. In the near-wall region of a

boundary layer, I is assumed proportional to the distance from the wall. In the far-

wall region or in free turbulence, l is assumed proportional to the width of the mixing

layer, that is,to the boundary-layer thickness or the width of the mixing jet. Although

the detailsof such a transfer mechanism are not well understood, the basic concept gives

satisfactory results even at hypersonic Mach numbers in the presence of large heat trans-

fer and large pressure gradients. (See ref.8 and paper 18 of this compilation.) One pur-

pose of the present paper is to determine whether the basic mixing-length concept can be

extended to three-dimensional flows. Three differentapproaches to this problem willbe

considered.

Independence principle.-The chordwise development of the laminar, incompressible

boundary layer on a swept infinitecylinder is independent of the spanwise flow. The

applicationofthis same principle to turbulent flow was firstattempted by Young and

Booth (ref.10). Although the variable density in compressible flow couples the chordwise

and spanwise momentum equations, itis of interestto consider whether a valid mixing-

length expression for the Reynolds stress can be formulated from the independence

principle.

Thus, ifthe chordwise flow is independent of the spanwise flow, the chordwise shear

would have to be of the form
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-_ 21alia]
Tx,T = P/x J'_l- _ (11)

The simplest expression for the spanwise shear that retains the correct form at the stag-

nation line is

- 2_0w=ptz I--I_ (12)
Tz,T [_}y [0y

The resulting expressions for the eddy viscosities are

Cx= _x

_z _z -_-

Hence the eddy viscosities are different in the two directions and behave as vector quan-

tities. The turbulent Prandtl number would then presumably be based on the "total" eddy

viscosity, with the result that

C

Npr,T = _-_ex2 + ez2 (14)

However, substitution of equation (13) into equation (6) gives

+ _2aw

and it is evident that a total eddy viscosity like that of equation (14) cannot be obtained

in explicit form from equation (15). The requirement of the independence principle that

the eddy viscosity should be a vector-like quantity, or should depend on coordinate direc-

tion, may therefore be erroneous. Experimental data of Ashkenas and Riddell (ref. 11)

also indicate that the independence principle may not apply to turbulent flows. (See also

discussion in ref. 12.) In view of these difficulties, theformulation of eddy viscosities

from the independence principle will not be pursued further herein.

Invariant turbulence.- An alternate approach to the independence principle is based

on the concept that the eddy viscosity should depend only on the properties of the turbu-

lence and a local eddy scale as in the methods of Prandtl (ref. 13) and Glushko (ref. 14).

The application of this concept to a mLxing-length approach suggests that the eddy vis-

cosity would be a scalar function independent of the coordinate direction. Accordingly,

the components of Reynolds stress are written

rx,T = _/2 OG ____._)

oy (16)

r_.,W _2a¢ay
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and the eddy viscosity is then

To determine the scalar function

the result

= = _2 aG (17)
E =E x E z _-

G, equation (17) is substituted into equation (6) with

lj2aG at_ 2

Then by analogy with equations (9) and (10), where the velocity-gradient function for the

shear component is repeated in the eddy viscosity, the expression for G is

-_-= +

The final expression for the eddy viscosity then becomes

_ 2{-I_\2 (__>211/2e =Pl L_-'_) +

(19)

(20)

Bradshaw (ref. 15) has derived a set of differential equations for the two components

of shear stress based on the Navier-Stokes equations and several assumptions regarding

the behavior and formulation of correlation terms for fluctuating pressure and velocity.

These equations indicate that the directions of the shear stress components are not gen-

erally the same as the directions of the corresponding mean velocity gradients. However,

in the near-wall region, Bradshaw's equations reduce to the same form as the present

results (eqs. (18)and (19)).

Lettau's vorticitytransfer hypothesis.- In reference 9, Lettau proposed a modifica-

tion of Taylor's vorticitytransfer theory that accounts for the combined action of conser-

vation and adjustment of the vorticityof a fluidelement as itis convected along an eddy

trajectory. The resulting expressions for the three components of fluctuatingvelocity

reduce to simple forms for the present application. That is,by the use of conventional

order-of-magnitude analysis for a thin boundary layer on a swept infinitecylinder,these

expressions for the fluctuatingvelocity components reduce to

u' = -ly _
ay

v' =ix _,+Zz
v$

w' = -ly _-

(21)
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For simplicity, the various components of an "eddy displacement vector," represented in

equations (21) by lx, ly, and lz, are assumed to be independent of direction. The com-

ponents of Reynolds stress then become

--%

rx,T - __v,u---7 = _/2_+ 0w_--_

Tz,T = __v-7_W, = _2(._ + 0w_-_._

(22)

The eddy viscosity is then given by

(23)

which is the same for both shear components, but in contrast with the invariant-turbulence

model of equation (20), this modification of Lettau's hypothesis is the scalar sum of two

vector quantities. Recently, Lettau (ref. 16) has generalized his original hypothesis of

reference 9 in an attempt to account for possible variations of his eddy displacement vec-

tor and has applied the results to a free-turbulence problem.

Mixing-Length Function

The mixing-length function used for the present calculations is

I= - exp 5// (24)

This expression is the same as the function used in reference 8 except that the gas proper-

ties in the exponential are herein always evaluated at the surface, and the function f(y/5)

was modified to account for smaller levels of turbulence. That is, the fl function of

reference 8 (see table I in ref. 8) was modified by reducing the maximum value of the

function for y/5 > 0.1 from the value of 0.09, to 0.07 or 0.05. The Prandtl slope in the

near-wall region df
d(y/5-----_= 0.4 was retained. Also, the functional dependence of A* on

the blowing parameter 2B/Cf as given in figure 1 of reference 8 has been used in the

present calculations.

Turbulent Prandtl Number Variation

The variation in turbulent Prandtl number through axisymmetric compressible

boundary layers with large heat transfer and large favorable pressure gradients was

treated extensively in reference 8. The results indicated that values of Npr,T = cpe
K
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(the"static" turbulent Prandtl number) in the outer part of these boundary layers may be

as small as 0.5. Values of Npr,T obtained from experimental data on flatplates and

reported in references 17 and 18 are generally greater than 1.0 near the wall and tend to

decrease below 1.0,or in some cases to nearly 0.5,farther from the wall. On the basis

of these results,the Npr,T variation used in allsolutions reported herein was taken as

a'simple ramp function of y/_} as given by the following relations:

Npr,T = 2.0 - 5 Y--5 <Y =<0.3>-_

Npr,T = 0.5 o.3)J
(25)

Some check calculations with the alternate assumption of Npr,T = 0.9 reduced the pre-

dicted heat transfer by at most 15 percent, which was considered to be within the range

of experimental uncertainties. For the present conditions, the choice of the Npr,T

function is apparently not critical.

Numerical Procedure

The Reynolds stress terms in equations (2) and (3) are replaced by the eddy-

viscosity expressions (eqs. (17), (20), or (23)) with the mixing-length function given by

equation (24). These eddy-viscosity and mixing-length expressions are also used in the

energy equation (4b) after replacement of the turbulent heat flux by the eddy-conductivity

relation of equation (7) and the introduction of Npr,T. The resulting equations are trans-

formed to the coordinate system },_? defined by

_x/L (pU)r Ue
'(L)= NRe's "_0 _ _e d(L)

(26)

_T_xz = NRe,s Ue/2_e _ z/L -P-- d(-_)

where _ is adjusted to obtain a nearly constant boundary-layer thickness in the

,7? plane in order to increase the computational efficiency.

The numerical procedure used to solve the transformed equations is an implicit

finite-difference procedure similar to that of reference 19. The partial derivatives are

replaced by linear-difference quotients. The result• is a set of N - 1 linear algebraic

equations for each of the unknown velocity components and enthalpy (_, _, and H)at the

N grid points for the next downstream station. The matrix for each set of these linear

equations is tridiagonal, so that an efficient algorithm is used in their solution. After

the solution for fi and W is obtained from the momentum equations, the transformed
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normal velocity is obtained from the continuity equation; then the enthalpy (at each grid

point) is obtained by the same numerical method used for u and _. This procedure is

repeated with updated values used in all difference coefficients until convergence is

obtained.

The solutions were started at a small but finite chordwise distance from the stag-

H - H w

nation line with an assumed set of profiles for U/Ue, _/We, and He _ Hw. This pro-

cedure was used for the present solutions because the correct limiting forms of the equa-

tions at x = 0 had not yet been incorporated in the computer program. It was found

that "unique" solutions for all variables could be obtained within a distance equivalent to

2 or 3 boundary-layer thicknesses by using a large number of small steps in the chord-

wise variable _. These unique solutions depended on the particular eddy-viscosity model

used but were independent of the input profile shapes and input boundary-layer thicknesses,

provided reasonable assumptions were used for these quantities.

EXPE_MENTAL METHODS

The implicit finite-difference procedure as just described can provide, for all

practical purposes, nearly "exact" solutions to the partial differential equations since

the method is numerically stable. Of course, the accuracy of the solutions depends on the

step sizes, the convergence criteria for the iterative cycles, and the accurate specifica-

tion of boundary conditions. Essentially by trial-and-error processes, these matters

have been treated during the course of this and previous investigations (refs. 19 and 8)

with the result that the present solutions are believed to be accurate to within 1 percent

or better. Consequently, the comparison of theoretical predictions with data provides a

direct evaluation of the eddy-viscosity models, the mixing-length functions, and turbulent

Prandtl number distributions since for a given set of boundary conditions, these are the

only ingredients in the theory that can account for different predictions. Thus, by using

various eddy-viscosity models and mixing-length functions in the theory and comparing

results over a range of Reynolds number and with as many different experimental mea-

surements as possible, the optimum formulation of Reynolds stress and turbulent Prandtl

number can be determined. Such a process may be considered as "numerical experi-

mentation" to determine the best form and values of the Reynolds stress.

Experimental data have been obtained for this purpose on a 60 ° swept slab with and

without blowing at the blunt leading edge. The surface heat transfer, Mach number pro-

files, boundary-layer thickness, and surface streamlines were obtained for the model

without blowing. For the model with blowing at the leading edge, the only data available

as yet are for surface heat transfer on the leading edge and downstream on the slab. The

wind-tunnel facility and models will be described in detail in the following sections.
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Facility

All the data presented herein were obtained in the Langley Mach 8 variable-density

hypersonic tunnel. This blowdown-type facility has a contoured axisymmetric nozzle

with an 18-inch-diameter test section. Transient testing techniques, that is, rapid

exposure of models to established flow conditions, are accomplished by means of a model

injection mechanism located directly beneath the test section. Windows are located on

both sides and at the top of the test section for lighting and photographing models. The

free-stream Mach number varies slightly with free-stream Reynolds number (ref. 20).

Data will be presented herein for free-stream Reynolds numbers, based on leading-edge

diameter, of 0.92 × 105, 2.6 × 105, and 9.3 x 105. The corresponding free-stream Mach

numbers used in the data reduction are 7.81, ¢/.94, and 7.98, respectively.

Models

For this investigation the test configuration is a 60 ° swept slab with a leading-edge

radius of 1/2 inch. One pressure model, three plastic heat-transfer models, and one

porous-leading-edge model were used in the experimental tests. A sketch of the basic

configuration used for the pressure model is shown in figure l(b). The coordinate sys-

tem used to locate the instrumentation on the various models is also given in this figure.

The forward portion of all models (ahead of the dashed lines) was geometrically identical

with the pressure model shown. The aft portion of the plastic models and the porous-

leading-edge model were modified as indicated by the dashed lines in the figure. The

mounting plate as shown in the sketch was used for the pressure model and the plastic

heat-transfer models. The mounting plate for the porous-leading-edge model was modi-

fied, as will be shown subsequently; however, the leading edge of the plate was 1/4 inch

ahead of the apex of all models.

Pressure model.- The pressure model was made of stainless steel and was pro-

vided with seven chordwise rows of pressure orifices over a 12-inch span as shown in

figure 2. The distribution of these orifices in the three chordwise rows used in this

investigation is given in table I. A boundary-layer pitot-tube rake is shown attached to

the model in figure 2. Details of the rakes used will be given in a subsequent section.

Phase-change heat-transfer models.- A photograph of one of the three plastic

models used with the phase-change coating technique is shown in figure 3. The model

shown was cast from an epoxy resin with a silica base. One of the other plastic heat-

transfer models was cast from a slightly different mixture of epoxy and silica, and for

the third model, mica was used as the base material. Therefore, these three models had

different thermophysical properties. The value of the combination of these properties

required in the phase-change method is p_. The values of this quantity for the three

models were 0.073, 0.075, and 0.034 Btu/ft2 OR secl/2, respectively.
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Porous-leading-edge model.- A photograph of the porous-leading-edge model used

in this investigation is shown in figure 4. The leading edge of this model consisted of a

10_- inches long and approximately 3/32 inch thick. The hemicylin-porous hemicylinder

der was made of sintered stainless steel with a porosity of approximately 13 percent.

The leading edge was electron-beam welded to the swept slab which consisted of a

machined, ribbed structure with a thin skin. The mounting-plate configuration for this

model is different from that shown in figures l(b), 2, and 3. In particular, the forward

section of the plate was machined into an elliptical planform which projected beyond the

periphery of the model apex by I/4 inch.

The coolant air was fed into a chamber just behind the porous leading edge. The

chamber could be pressurized to 415 psia. The pressure and temperature of the coolant

air were measured in this chamber.

Thermocouples were installed in the porous leading edge and attached to the thin

skin of the slab. The locations of the thermocouples used in this investigation are given

in table II. To install the thermocouples on the porous leading edge, 0.016-inch-diameter

balls were formed at the thermocouple junctions. Teflon-coated chromel-alumel wires

of 0.003-inch diameter were used. The thermocouple wires were then inserted into a

0.013-inch-diameter hole which was burned by an electric-arc technique through the

porous leading edge at an angle of 45 ° to the surface. The axes of the holes were alined

in spanwise planes which in turn were normal to the surface. The thermocouple junction

(a 0.016-inch-diameter ball) was tapped into the 0.013-inch-diameter hole and finished

flush with the outer surface. The hole was then filled with epoxy resin to prevent direct

leaks of coolant air around the junction. This procedure resulted in a thermocouple junc-

tion within 0.004 inch of the external surface. Good thermal contact of the junction with

the porous matrix was obtained.

On the slab portion of the model the thermocouples were welded to the back surface

of the stainless-steel skin, which was 0.030 inch thick.

Boundary-Layer Pitot-Tube Rakes

One of the boundary-layer pitot-tube rakes used to obtain Mach number profiles

is shown attached to the pressure model in figure 2. A photograph of these rakes showing

the tube assembly is presented in figure 5(a). The rakes consisted of two rows of three

pitot tubes each. Sketches of the pitot-tube configurations with pertinent dimensions are

given in figure 5(b).

Test Techniques and Data Reduction

All data were obtained by using a transient testing technique in which the tunnel was

started and brought to the desired operating conditions and then the model was rapidly
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injected into the airstream by a pneumatic piston. An analog-to-digital data recording

system with a maximum resolution of 40 points per second was used for thermocouple

and static-pressure data.

Pressure data.- Strain-gage pressure transducers were used to measure the static

pressures on the model shown in figure 2. The locations of the pressure orifices (0.040-

inch diameter on the leading edge and 0.060-inch diameter on the slab) used in this inves-

tigation are given in table I. The output of the transducers was monitored to determine

when time-steady pressures were reached, then the data were recorded on the readout

system at the rate of 20 points per second.

The pitot-tube rakes shown in figure 5 were mounted on the pressure model as

indicated in figure 2. Pitot pressure data were obtained at five chordwise locations on

the slab portion of the model. The rakes were alined so that the pitot tubes were parallel

to the free-stream flow direction. The plane of the pitot orifices was located approxi-

mately 1/4 inch behind a static-pressure orifice at each chordwise location. The

y-location of the tube assembly was adjusted with shims between the rake and model.

The pitot-pressure data were read from photographs of a mercury manometer board.

The ratios of the local surface static pressure to the pitot pressure were used to

compute the Mach number distributions through the boundary layer. The boundary-layer

thickness was taken as the distance from the surface where the Mach number became

approximately constant.

Oil flow.- In order to obtain the direction of the wall streamlines and the overall

flow pattern, small dots of a mixture of oil and lampblack were placed on the slab portion

of the pressure model. The model was then rapidly injected into the airstream. After

exposure to the flow of 3 to 8 seconds, depending on the Reynolds number, the model was

retracted and the resultant patterns photographed.

Heat transfer for no blowing.- Heat-transfer-coefficient distributions on the plastic

"stycast" models (fig. 3) were obtained with the phase-change coating technique (ref. 21).

In this technique, a thin surface coating of material that undergoes a visible phase change

at a known temperature is sprayed on the model. The model is then injected rapidly

into the established flow and the phase-change patterns which develop as the model is

heated are recorded by motion-picture photography. The patterns of isothermal lines

so obtained may be transformed to lines of constant heat-transfer coefficient provided

the distribution of adiabatic wall temperature is available and the thermophysical prop-

erties (pck) of the model material are known. Exact solutions of the heat-conduction

equation for the specific geometry are not generally practical; therefore, the local heat-

transfer coefficients for the model are determined from the solution for a semi-infinite

slab. The results obtained with this assumption are a good approximation to the solution

for the actual body geometry when the depth of heat penetration is small compared with
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pertinent model dimensions, as is the case for the present model. A detailed discussion

of the accuracy limits due to the semi-infinite-slab assumption is presented in

reference 20.

Measurement of mass injection rates.- The local mass injection rates on the porous

leading edge were measured at several spanwise stations and chordwise distances over a

range of internal pressures from 150 to 400 psig. These measurements were made with

a plastic tip probe (0.096 inch inside diameter) which was pressed against the porous

surface as shown in figure 6. The probe was connected with a butyl phthalate manometer

and a pressure-sealed container of known volume. The total mass flow rate through the

porous leading edge was set at the desired level by adjusting the internal pressure. This

flow rate was measured with a floating ball-type flowmeter. The plastic tip probe was

held in contact with the model for a measured period of time. At the end of this period

(---30 sec) the system was sealed just downstream of the plastic tip probe. After equilib-

rium was established, the change in pressure and volume (the change in volume due to the

change in level of the manometer fluid) of the isothermal system was recorded. The local

mass flow rate through the contact area of 0.096-inch diameter could then be calculated.

The pressure rise in the sealed volume was limited to less than 0.7 percent of the pres-

sure inside the model. Therefore, the mass-flow distribution through the porous material

was not altered by the measurement technique. The validity of this statement is evident

from the relation for the mass flow rate through a uniformly porous material. This rela-

tion is given in reference 22 (eq. (7), p. 78) and, in the notation herein, is

a Pc 2 - Pw 2

fia - PwVw = 2R(/_W)w _Y (27)

Measurements were made at chordwise intervals of 10 ° around the leading edge and

at spanwise intervals of 1 inch or less along the porous leading edge in the region

7.85 -< z/d =<11.85. Large spanwise and chordwise variations in mass flow rates were

found to exist. The results are shown in figure 7 in the form of the permeability param-

eter _ which would be constant if the material were perfectly uniform in porosity and

thickness. The chordwise variation in permeability is shown in figure 7(a) for the span-

wise location z/d = 8.85 and for the range of internal pressures shown. The spread of

the data at a given x/d location in this figure gives an indication of the repeatability of

the technique since the only variable was the internal pressure. The chordwise varia-

tion of the permeability for a range in span of 4 inches (7.85 =<z/d _-<11.85) and pressures

of 250 and 300 psig is presented in figure 7(b). The data spread here is due primarily to

the spanwise variation in the permeability.

Test procedure for heat transfer with blowing.- The porous-leading-edge model

described previously and shown in figure 4 was instrumented to provide heat-transfer
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data on both the porous leading edge and on the thin-skinned slab. The locations of the

thermocouples used in the present investigation are given in table II.

For the wind-tunnel tests, the desired mass flow rate was established first with the

model in the retracted position inside the sealed chamber below the tunnel test section.

(.See ref. 20.) During the tunnel startup process this chamber was evacuated to tunnel

static pressure which was about 0.05 times the pressure on the stagnation line of the

swept leading edge after the model was exposed to the flow. This sudden change in

external pressure on the porous leading edge after model injection did not affect the pre-

set mass flow because of the large pressures (150 to 400 psig) inside the model.

Heat-transfer data were used during the period from 0.2 to 1.5 seconds after the

model first entered the airstream. Because of the short testing time, the model was

practically isothermal; thus heat-conduction effects were minimized and any change in

the injected mass flow rate which would occur with an increase in model temperature

(see eq. (27)) was prevented. The thermocouple data were recorded at a rate of 20 points

per second on the digital readout system.

Data reduction procedures for tests with blowing.- A numerical procedure was

developed to reduce the temperature-time histories of each thermocouple within the

porous wall to heating rates. The method provides an approximate solution of the two-

dimensional heat-conduction problem in a porous matrix with one-dimensional (or radial)

fluid flow and with temperature-dependent thermal properties. The temperature of the

fluid is assumed the same as that of the porous matrix.

To illustrate the procedure, consider the finite slab shown divided into six blocks

in figure 8. The initial temperature and time-dependent one-dimensional blowing rates

for each block are known. At time t -- to, the front face of the slab (the left side in the

figure) is exposed to an unknown heating rate which may vary with time and block location.

The upper and lower surfaces of the slab are insulated. In order to determine the

temperature-time profiles of the remaining blocks, a heat balance is written for each

block by asstlming a linear temperature variation between blocks. The heat balance for

block 1 is as follows:

Con- x conducted,
veetion Radiation Stored Gas absorbed material

A
clIAcI'I- q' _ q,lJ PlClV1 " 2m3Ax'3Cp'1 (Xl x2) - '2Ax'l (XlAt + + x2)

x conducted, gas y conducted, material y conducted, gas

(Xl + x2) (Yl + (Yl + Y4)
: o  28)
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where the primes denote a temperature evaluated at the previous time step and the sub-

scripts 1 to 6 refer to block numbers. The subscript Cl indicates the surface exposed

to heating rate el. Since the calculation starts at t = to, all the primed quantities are

known. A similar heat balance is written for all blocks and the resulting system of

linear equations are obtained:

alT 1 +blT 2 + dlT 4

a2T 1 + b2T 2 + c2T 3

b3T 2 + c3T 3

a4T 1

b5T 2

+ c6T 3

+ e2T 5

+ f3T6 =

+ d4T 4 + e4T 5 =

+ d5T 4 + e5T 5 + f5T6 =

+ e6T 5 + f6T6 =

& $

--  ,1ql ÷gl

= g2

g3

g4- A_,4c14

g6

(29)

The temperatures T 1 and T 4 are known; that is, they are obtained from the mea-

sured temperatures. Also, the temperature coefficients ai, bi, • • ", fi and the con-

stants gi are calculated from the given inputs. The unknowns are then _11, _14, T2,

T3, T5, and T 6

system:

which may be obtained from the solution of the following determinant

Unknowns

ql T2 T3 q4 T5 T6

Determinant elements Constants for any n time step

A_, 1 b I 0 0 0 0 -aITl - dIT4 + gl

0 b 2 c 2 0 e 2 0 -a2T1 + g2

0 b 3 c 3 0 0 f3 + g3

0 0 0 A_, 4 e 4 0 -a4Tl - d4T4 + g4

0 b 5 0 0 e 5 0 " d5T4 + g5

0 0 c 6 0 e6 f6 + g6

(30)

This system is solved successively at each n time step where t = t o + nat. The values

of the specific heats and thermal conductivities are "updated" at the new temperatures

obtained after each time step. The coefficients and constants of the determinant can then
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be updated, and the heating rates and temperature distributions obtained for the next time

step. This procedure is repeated until a specified time interval tf = to + jAt is reached.

The surface heating rates for each block are thereby computed over this specified time

interval with the time-dependent inputs T1, T4, m6' and m3 and the temperature-

dependent material properties.

Two different block configurations were used for five spanwise stations on the porous

leading edge as shown in figure 9. These block configurations were set up so that experi-

mental thermocouple readings could be used as direct inputs to the computer program

without smoothing techniques applied to the data. Hence, the chordwise thermocouple

distributions at the spanwise stations as indicated in the figure determined the block con-

figurations because the temperature-time history for one block in each column of blocks

is required as an input to the program. In the 56-block configuration, the symmetry of

the thermocouple locations about the x/d = 0 station allowed the use of the "surface"

thermocouple readings at both the location of the thermocouple and its "mirror" image.

This increase in the number of columns from four to seven was made in order to reduce

the chordwise length of the blocks and still provide thermocouple data in the chordwise

center of each column of blocks. Superposition of the thermocouple locations in this

manner is strictly valid only if the chordwise distribution of permeability _ is perfectly

symmetrical. Deviations in _ from symmetry can be obtained from figure 7 where the

data for the x locations of l0 °, 30 °, 40 °, and 70 ° are shown as flagged symbols. These

deviations are small for most of the data and hence were neglected in the 56-block

configuration.

The chordwise conduction errors are small, in spite of the relatively large block

dimensions in the chordwise plane, because of the nearly isothermal conditions during the

short test period. The surface block of each column was made 0.004 inch thick in accor-

dance with the approximate depth of the thermocouple junction. The remaining thickness

of approximately 0.090 inch was divided into seven blocks of equal thickness. The time

step used herein for all solutions was 0.05 second.

Comparisons of results from calculations for one-dimensional heat-conduction

problems with exact solutions from Carslaw and Jaeger (ref. 23) indicated that for the

block thicknesses and time steps of the present computations, errors would have been

negligible had only five equai-thickness blocks been used. To assess further the reliabil-

ity of the heat-balance method, tests were conducted on the porous-leading-edge model

with no mass injection at the same tunnel conditions for which the phase-change heat-

transfer technique was used on the plastic models. The validity of the inverse heat-

balance method was confirmed by comparisons of the resultant heat-transfer distribu-

tions. Description and verification of a one-dimensional inverse heat-balance solution

without fluid flow is given in reference 24.
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Downstream of the interface of the porous leading edge and the slab, the thermo-

couple wires were spotwelded to the inside surface of the thin stainless-steel skin which

was 0.030 inch thick. Here, the heating rates were obtained by fitting a second-degree

curve to the temperature-time data by the method of least squares, over a time interval

of 1.0 second. The time derivatives of temperature were then computed from the slopes

of these second-degree curves at the midpoint of the 1.0-second time interval. The

heating rates, neglecting conduction, were then obtained from the equation

dT w
_1w = (PC)m Ay (31)

RESULTS AND DISCUSSION

Static Pressure Distribution

The experimental pressure distributions obtained with the model of figure 2 are

shown in figure 10. The line faired through the data was used as the distribution of Pe

from which u e and Pe were computed for the input to all theoretical solutions

included herein. An isentropic expansion from Ps to Pe was assumed for these com-

putations of u e and Pe"

Zero Blowing

Heat transfer.- The chordwise distribution of heat-transfer coefficient at the span-

wise station z/d = 10.6 for NRe,oo = 0.92 × 105 is presented in figure 11. The plastic

models (fig. 3) were used to obtain these data with the phase-change technique. The

width of the hatched band represents the scatter in 56 data points obtained with eight dif-

ferent phase-change coatings (0.45 <=Tw/T t <___0.55) on the three models with different

thermophysical properties. The theoretical laminar distribution (solid line) was obtained

with the finite-difference procedure for Tw/T o = 0.4 and e = 0. The good agreement

between experimental data and the theoretical predictions indicates that the numerical

procedure is satisfactory.

Heat-transfer-coefficient contours obtained for typical runs on the plastic models

with the phase-change coating technique are shown in figures 12(a) and 12(b) for

NRe,_o = 2.6 × 105 and 9.3 × 105, respectively. In figure 12(a) the values of h* decrease

continuously along the chord at z/d = 10.6. The fact that the contours in this region are

essentially parallel to the leading edge indicates that the interference disturbances between

the mounting plate and the model are small; thus, the infinite-cylinder approximation is

acceptable.

In contrast to the contours in figure 12(a), the contours at the larger Reynolds num-

ber (fig. 12(b)) are not parallel tO the leading edge at any spanwise station for x/d > 1.2.
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On the leading edge for x/d < 1.1 and along the chord z/d = 10.6, the contour lines

are parallel to the stagnation line and the values of h* decrease with increasing x/d.

However, for x/d > 1.3 (at z/d = 10.6), the values of h* increase from a minimum

of 2.8×10 -3 to a maximum of 4.3 ×10 -3 . At x/d=2.2, thevalues of h* again began

to decrease. The locations of these minimum and maximum contours in h* are too far

from the mounting plate to be caused by interference effects, as shown by the results of

figure 12(a). Figure 12(a) also shows that the effects of the downstream end of the slab

are not responsible for the contour behavior noted in figure 12(b).

Comparisons and discussion of these different results are best made by means of

heat-transfer-coefficient distributions. The chordwise distributions of h* along the

chord z/d = 10.6 for the same test conditions of figure 12 are given in figure 13. Theo-

retical predictions for Tw/T t = 0.4 and with the eddy-viscosity models described pre-

viously (invariant turbulence and Lettau's (ref. 9) vorticity-transfer hypothesis) for

(//5)max of 0.05 and 0.07 are shown as the dashed lines. The solid lines represent pre-

dictions of the laminar theory obtained with e = 0.

The data and theoretical results in figure 13(a) are for NRe,oo = 2.6 × 105. The

width of the hatched band represents the scatter in 97 data points obtained with six dif-

ferent phase-change coatings (0.41 _-<Tw/T t _-<0.58) on the three models with different

values of pck. In the leading-edge region the theoretical turbulent distributions are

within the spread of the data; however, the original density of data points indicated that

the agreement is best with the (//5)max value of 0.05.

On the forward portion of the slab (0.785 =<x/d < 1.5), the experimental values of

h* fall below the theoretical turbulent distribution and approach the laminar predictions.

The experimental values of h* remain somewhat above the laminar predictions over the

remainder of the slab region to x/d = 3.5.

The experimental and theoretical results for NRe,_o = 9.3 x 105 are shown in fig-

ure 13(b). On the leading edge the theoretical turbulent prediction with the invariant-

turbulence assumption and (//6)max = 0.05 is in best agreement with the data. On the

forward portion of the slab, the data again drop below the turbulent predictions and tend

to approach the laminar prediction. However, in contrast with the experimental results

at the lower Reynolds number (fig. 13(a)), the level of the data begins to increase at

x/d _ 1.3 until agreement with turbulent levels is obtained at x/d = 2.0.

These trends of the experimental data with x/d and Reynolds number (figs. 13(a)

and 13(b)) as compared with the theoretical predictions suggest the possibility of laminari-

zation of the initially turbulent boundary layer on the leading edge. The drop in experi-

mental heat transfer just aft of the rapid expansion on the leading edge until nearly laminar

values are reached could also be caused partly by the effect of streamline curvature on the
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mixing length. (See ref. 25 and paper 18 of this compilation.) However, if the effects of

curvature were the main cause of this drop in heating, it might be expected that the exper-

imental levels of heating on the slab would rapidly approach turbulent values at both

Reynolds numbers since the curvature on the slab is zero. The possibility of laminariza-

tion will be discussed further after additional data are presented that will confirm the

experimental trends noted in figure 13.

Surface streamlines.- Oil flow patterns obtained on the slab portion of the pressure

model at NRe,_ = 2.6 x 105 and 9.3 x 105 are shown in figures 14(a) and 14(b), respec-

tively. The streamlines at the wall computed from theoretical values of _-w,x and _'w,z

for both laminar and turbulent flow are included in the figure for comparison. These

results are referred to in the figures as "surface viscid" streamlines. Inviscid stream-

lines at the edge of the boundary layer as based on the pressure distribution of figure 10

and the infinite-cylinder assumption that We is constant are also shown. The large

deviations between the viscid and inviscid streamlines indicate that large cross flows are

present.

For the lower Reynolds number (fig. 14(a)) the oil flow patterns are essentially

parallel to the laminar viscid streamline. This result is in agreement with the heat-

transfer trends noted in figure 13(a). At NRe,_ o = 9.3 x 105 (fig. 14(b)), the oil flow

patterns are nearly parallel {except just aft of the leading edge) to the theoretical viscid

streamline for turbulent flow with the invariant-turbulence eddy-viscosity model. Again

these results are in agreement with the corresponding results of figure 13(b). Surface

oil flow patterns caused by the boundary-layer pitot-tube rake are evident in figure 14(b}.

Of course, these interference patterns and those near the mounting plate should be dis-

regarded in the comparisons with theoretical predictions.

Velocity and Mach number profiles.- In order to illustrate the behavior of the veloc-

ity and stagnation-temperature profiles obtained from the finite-difference solutions, the

profile parameters _/Ue, F/We, and Tt - Tw
Tt,e _ Tw are plotted against y/5 in figure 15.

These profiles are in the stagnation region (x/d = 0.1) for the two Reynolds numbers of

2.6 x 105 and 9.3 x 105 .

The chordwise velocities "overshoot" the values of u e appreciably for y/5 > 0.3.

These results are qualitatively similar to those of reference 26, where exact solutions

for the laminar compressible boundary layer on swept cylinders also resulted in over-

shoot of the chordwise velocity profiles. In reference 26 the overshoot phenomenon was

attributed to the effects of compressibility. Comparison of the computed profiles with a

power-law profile
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(32)

for n = 1/4 also shown in figure 15 indicates that the present results differ greatly

from simple power-law profiles, as used for example in reference 3.

Experimental and theoretical Mach number profiles are shown in figures 16(a)

and 16(b) for the test Reynolds numbers of 2.6 x 105 and 9.3 x 105. The experimental

Mach number profiles were obtained from the ratios of measured pitot pressures and the

local static pressures given by the faired line in figure 10. The theoretical profiles were

computed for laminar (e = 0) and turbulent flow. The invariant-turbulence model with

(//5)ma x = 0.05 was used in the turbulent calculations.

Although there is considerable scatter in the data, comparisons at the lower

Reynolds number (fig. 16(a)) indicate good agreement between the experimental results

and predicted profile shapes and boundary-layer thicknesses for laminar flow. At the

higher Reynolds number (fig. 16(b)) the experimental results are in excellent agreement

with the predictions for turbulent flow. The pitot pressure data are therefore consistent

with the results of figures 13 and 14 which showed that for x/d > 2.0, the boundary layer

was nearly laminar at the lower Reynolds number and turbulent at the higher Reynolds
number.

Boundary-layer thickness.- The boundary-layer-thickness distributions with x/d

for NRe,¢ c = 2.6 x 105 and 9.3 x 105 are shown in figures 17(a) and 17(b). These values

of boundary-layer thickness were obtained from the Mach number profiles as indicated

for typical data in figure 16. In figure 17(a) the first datum point at x/d = 1.41 is

between the lower turbulent prediction and the laminar prediction. As x/d increases,

the experimental values of 5 approach the laminar predictions up to x/d = 3.2, in

agreement with the results of the heat-transfer and oil flow data (figs. 13(a) and 14(a)).

The last two data points at x/d = 4.16 and 5.16 show a slight increase from the theoreti-

cal laminar values. Since the heat-transfer data of figure 13(a) only extended to

x/d = 3.5, any trends for x/d > 3.5 in the heating data are not available. Close examina-

tion of the oil-flow data (fig. 14(a)) indicates a slight upward trend near the end of the slab

(x/d _ 5) toward the turbulent prediction. However, this trend may be caused partly by

interference from the mounting plate.

At the larger value of NRe,_ (fig. 17(b)), the first datum point (x/d = 1.41) is

between the laminar and turbulent distributions. This result is again consistent with the

corresponding heat-transfer and oil-flow results of figures 13(b) and 14(b). The remaining

data points are on or slightly above the turbulent result with (//5)max = 0.05, and are also
consistent with the heat-transfer and oil-flow data.
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Laminarization.- The preceding comparisons of data and theory for heat transfer,

oil flow, Mach number profiles, and boundary-layer thickness have all given consistent

results regarding the apparent trends toward lamina_ _r turbulent flow. To provide

some further indication of whether these trends were aused by laminarization of the

initially turbulent boundary layer as the flow expands around the leading edge, values of

a laminarization parameter have been computed. This parameter is based on the form

proposed in reference 27 but modified herein for application to three-dimensional flow.

The investigation in reference 27 for two-dimensional nozzle flow showed that

laminarization effects become significant when

#e dfie _ 2 x 10 -5 (33)
-2dx

PeUe

This parameter can presumably be extended to three-dimensional flow by using stream-

line coordinates. That is, by replacing Ue with qe and dx with ds, the value for

the parameter of 2 x 10 -5 would be applicable to three-dimensional flow. Thus, when

_e dqe > 2 x 10 -5 (34)

Pete 2 ds _

laminarization in three-dimensional flows might be expected if the same mechanisms are

responsible for the phenomenon as in two-dimensional flow. However, calculated values

of the parameter in relation (34), for the present configuration, were at most nearly

2 orders of magnitude smaller than 2 x 10 -5. Apparently, if the tendency noted in the

present results for the heat transfer to approach laminar values aft of the leading edge

were caused by laminarization effects, the criteria of relation (34) would be much smaller.

A possible explanation of a smaller criterion in three-dimensional flow is as follows:

It has been established that three-dimensional laminar boundary layers with large cross

flows are inherently unstable and therefore premature transition due to small distur-

bances is likely (ref. 28). For the present configuration, disturbances generated by the

leading-edge portion of the mounting plate upstream of the model apex would be sufficient

to cause transition to turbulent flow at small Reynolds numbers. (See refs. 29 and 30.)

Consequently, the turbulent boundary layers observed on the leading edge in the present

tests may have low levels of turbulence intensity and would therefore be highly susceptible

to laminarization. The small values of (//6)ma x used in the theory (0.05 compared

with usual values of approximately 0.09) tend to support the possibility of low turbulence

levels, since small values of the mixing length cause small values of eddy viscosity which

imply low levels of turbulence.
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Heat Transfer With Blowing

Application of theory for nonsimilar blowing rates.- The present finite-difference

procedure can be applied directly to calculation of boundary layers with surface mass

transfer if the chordwise distribution of the normal velocity v w at the surface is known.

The infinite-cylinder condition that spanwise derivatives of all mean-flow quantities are

0Vw 0. This requirement is not met in the present tests becausezero requires that a-"z--=

of the large spanwise variations in the permeability a as shown by figure 7(b). Equa-

tion (27) shows that the spanwise variations in v w are directly proportional to the

variations, since _aPw ._ O.
0z

Consequently, a direct comparison of theoretical predictions with data is not pos-

sible. Instead, calculations for each of the two values of NRe,oo have been carried out

for two different blowing rates that represent the maximum and minimum range of

values over the span interval 7.85 _-<z/d _-<12.85. These results will then be compared

with the experimental data over the same span interval. Thus, the general validity of the

theoretical predictions can be assessed provided that the experimental values of heat

transfer on both the porous leading edge and the downstream slab are affected mainly by

leading-edge blowing rates within the same span interval.

The chordwise distributions of the maximum and minimum mass flow measured over

the span interval 7.85 _.<z/d -< 12.85 are shown in figure 18 as the shaded bands for

values of the internal chamber pressure of 212 and 405 psia. The chordwise distributions

of v w corresponding to these maximum and minimum mass flow rates were used as

inputs for the computer program. Solutions for these input flow rates were then obtained

for laminar flow (e = 0) and turbulent flow where the invariant-turbulence or the Lettau

eddy-viscosity models with (//6)max = 0.05 were used. Comparisons with experimental

data for the two test Reynolds numbers of 2.6 × 105 and 9.3 × 105 will be presented. The

chamber pressures used for these tests were approximately 210 and 400 psia, respec-

tively, and hence the injection flow rates correspond to those shown in figure 18.

Results for NRe,.o = 2.6 × 105.- The predictions of heating rates and the experi-

mental data for NRe,_ o = 2.6 x 105 are shown in figure 19(a). The hatched bands in the

figure are bounded by the upper and lower limits of the predicted heat-transfer rates for

the minimum and maximum limits in _ obtained from the boundaries of the shaded

bands of figure 18(a). Note that the lower limit of lh gives the upper limit of heating

rate and vice versa. The experimental data are shown as the vertical bars. The length

of these bars represents the variation of heating rates measured within the same span

interval 7.85 _-<z/d -< 12.85. Since measurements of recovery temperature with blowing

were not available, all experimental data and theoretical results with blowing have been
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normalized with the local theoretical heating rates for no blowing. These reference

values of heating rates for no blowing were computed for the same local values of Tw

that occurred in the test data or were used in the theory with blowing. All reference

values of heating rate in this and subsequent figures were computed with the invariant-

turbulence model and (//5)ma x = 0.05.

Comparison of the experimental and theoretical results in figure 19(a) indicates

that the boundary layer on the leading edge was turbulent and that the data agree with

predictions for minimum injection rates rather than those for maximum injection rates.

Just upstream of the slab interface, the experimental heating rates decrease and are

within the predicted laminar limits. The data on the slab agree with laminar predictions

for the minimum injection rates. The negative heating rates predicted by the theory for

laminar flow with maximum blowing rates in the vicinity of x/d _ 0.8 are caused by the

large expansion of the flow around the leading edge. This large expansion reduces the

static temperature of the injected film of air near the surface below its temperature

farther upstream (which would be nearly the wall temperature). Hence, when this sur-

face film of air is convected downstream, its temperature is below the local surface tem-

perature and heat is then conducted from the model to the flow.

The agreement of data on the leading edge with predictions for minimum flow rates

rather than the maximum rates may be attributed partly to the thermocouple installation

technique, which apparently caused some local blockage of coolant flow in the vicinity of

the thermocouple junctions. That is, the measured mass flow rates at these thermocouple

locations tended to be somewhat smaller than most of the other measured flow rates

within the span interval 7.85 =<z/d _-<12.85 as indicated in figure 18(a) where the data

points obtained at the junction locations are shown as x. However, the agreement of data

on the slab with predicted heat transfer for minimum leading-edge blowing could only be

attributed to the reduced levels of injection rates as z/d is reduced. (Some of these

smaller values of injection rates for z/d < 7.85 are shown in fig. 18(a).) That is, the

streamlines on the forward portion of the slab at outboard z/d locations have orig-

inated farther inboard at smaller values of z/d on the leading edge. The flow along

these streamlines has therefore been subjected to generally smaller blowing rates than

measured at the outboard z/d locations (see fig. 18(a)) because of the spanwise varia-

tions in permeability. The reduction in blowing rates for z/d _-<7.85 may also affect

measured heating rates on the leading edge for z/d > 7.85. That is, the local heating

rates would tend to be larger because of the upstream history of small blowing rates

along streamlines. The reduction in blowing rates for z/d < 7.85 is therefore another

cause for the tendency of the data on the leading edge to agree with predictions for mini-

mum blowing rates.
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The results shown in figure 19(a) indicate the same laminarization trends noted for

this value of NRe,_o in the data for no blowing (figs. 13(a), 14(a), and 17(a)). It may
therefore be concluded that leading-edge blowing had no significant effect on the laminar-

ization phenomenon. Note also, by comparison of figures 19(a) and 13(a), that the leading-

edge blowing did not move transition forward, at least for the region x/d < 4.0.

Results for NRe,_o = 9.3 x 105. - The chamber pressure for the tests at

NRe_ o = 9.3 x 105 was held at Pc -- 400 psia. The predictions and the experimental
data are shown in figure 19(b) where the same format as that of figure 19(a) for data and

theory has been used. The maximum injection rate for laminar flow caused "blowoff,"

or boundary-layer separation, so that no solution was obtained for this condition. The

predicted ratios of heating rates for the minimum injection flow, with the Lettau eddy-

viscosity model, exceed unity over most of the slab because the reference _tm= 0 is for

the invariant-turbulence model.

Comparisons of data and predictions shown in figure 19(b) again indicate turbulent

flow on the leading edge with measured heating levels near the predictions for minimum

blowing. The large decrease in the measured heating just upstream of the slab is prob-

ably again caused by laminarization. Following this minimum, the heating on the slab

increases rapidly toward the predicted turbulent levels for minimum blowing. The ten-

dency of the data on the slab to agree with predictions for minimum blowing rates at the

leading edge is again attributed to the reduction in blowing with decreasing z/d. (See

fig. 18(b).) These results are therefore consistent in every respect with the no-blowing

results at the same Reynolds number. (Compare figs. 13(b), 14(b), 16(b), and 17(b).)

Apparently, the blowing has not significantly affected the laminarization effects or transi-

tion location. The tendency of the data on the leading edge to agree with predictions for

minimum blowing rates is also consistent with the blowing data at the lower Reynolds

number (fig. 19(a)) but is apparently caused mainly by the spanwise variations in blowing

rather than by the partial blockage of the injected air at the thermocouples as indicated

by comparisons of the data for the thermocouple locations and for z/d < 7.85 in fig-

ure 18(b). It is concluded that both eddy-viscosity models gave heating predictions within

the spread of the data for x/d _ 2.5.

Effect of blowing in the stagnation region.- Solutions were obtained by the finite-

difference procedure for several blowing rates in addition to those shown in figure 18.

The heat-transfer predictions in the vicinity of the stagnation line from these solutions

are shown in figure 20. The ratios of Nst/Nst,fi_=0 are plotted against the blowing

parameter B/Nst, where, as in reference 31, for both data and theory the recovery fac-

tor with blowing was taken as 0.9 of the recovery factor for no blowing.
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The dashed line is a correlation of the computed values to within 1 percent for both

test Reynolds numbers. The experimental data are in reasonable agreement with the

theoretical prediction over the range of blowing rates available. The blowing rates used

for the data points were taken as the measured values at the corresponding thermocouple

locations.

Also shown for comparison in figure 20 is a correlation in terms of the same param-

eters for flat-plate and cone data. These data are for turbulent boundary layers and the

correlation is obtained from reference 31. The blowing rates for the present data are

too small to provide a reliable assessment of the prediction. However, comparison of

the correlation lines indicates that blowing near the stagnation line of swept cylinders

reduces the heating more than a comparable blowing rate on flat plates.

Cross-Flow Predictions

As mentioned in the Introduction, the use of an inviscid-streamline coordinate sys-

tem and the assumption of small cross flow simplify the boundary-layer equations. That

is, the momentum equation in the streamwise direction and the energy equation become

independent of the cross flow. If the inviscid streamlines are known, the problem is

therefore reduced to the solution of an equivalent two-dimensional flow.

In order for the assumption of small cross flow to be generally valid, the square of

the ratio of the cross-flow velocity to the streamwise velocity must be small. The maxi-

(see refs. 5 and 7, for example).mum value of this ratio occurs at the limit as y -* 0

The small-cross-flow criterion is then

p]w << 1.0

In the present notation this shear-ratio parameter is

_n = tan(Ow - Oe)

(35)

(36)

where 0e is the angle between the spanwise coordinate direction and the local inviscid

streamline direction, and 8w = arc tan (_zz/,,,"

The chordwise distributions of the small-cross-flow parameter (-rn/_'p?" from

several of the same solutions used in previous figures are shown in figure 21. The maxi-
_ / JW

mum values in the curves occur near the interface of the leading edge and slab and range

from 0.17 to 0.28 for turbulent flow with no blowing. These results are consistent with

the location and magnitude of maximum values of the cross-flow parameter obtained by

Bradley (ref. 5) for turbulent flow on a circular cylinder at higher Reynolds numbers.

These peak values from reference 5 were approximately 0.12.
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The distributions from the solutions for laminar flow with no blowing are essentially

independent of Reynolds number and the maximum value is 0.44, which is in agreement

with corresponding values obtained in reference 7. The results given in reference 7 are

for laminar boundary layers on circular cylinders with the assumption of local similarity.

Interpolation between the results of reference 7 gives a maximum value for the cross-

flow parameter of about 0.4 for the present conditions.

The effect of blowing increases the values of the cross-flow parameter by as much

as an order of magnitude when the maximum blowing rates are used. For these condi-

tions, the assumption of small cross flow would not be applicable to the momentum char-

acteristics of the boundary layer such as velocity profiles, skin friction, and surface

streamlines. However, the results of reference 7 indicated that heat-transfer predictions

from the small cross-flow theory for laminar boundary layers were within 15 percent of

the correct values when the cross-flow parameter was as large as 3.0.

CONCLUSIONS

A finite-difference method has been developed to solve the equations for compres-

sible turbulent boundary layers on swept infinite cylinders. Predictions of surface heat

transfer by the method were compared with experimental data on a blunt-slab configura-

tion with and without leading-edge blowing. The leading edge was a hemicylinder which

was swept 60 ° with respect to the free-stream flow direction.

A numerical procedure for solving the two-dimensional heat conduction problem in

a porous matrix with one-dimensional fluid flow was also developed. This procedure

was used to reduce the temperature-time history of the thermocouples near the surface

of the porous leading edge to surface heat-transfer rates.

Predictions from the finite-difference method for solving the boundary-layer equa-

tions were also compared with experimental values of surface streamlines, Mach number

profiles, boundary-layer thickness, and heat transfer on a similar configuration but with-

out blowing. The tests were conducted at a stream Mach number of 8 and over a range of

stream Reynolds numbers based on leading-edge diameter NRe,oo of 0.92 x 105 to

9.3 × 105.

Two eddy-viscosity models which utilized general mixing-length functions scaled

to the boundary-layer thickness were used in the calculations. One was termed the

"invariant turbulence" model and was a scalar function based on the assumption that eddy

viscosity is independent of direction. The other model was based on Lettau's vorticity-

transfer hypothesis (Journal of the Atmospheric Sciences, vol. 21, no. 4, July 1964) and

was also independent of direction but contained the scalar sum of two velocity-gradient

terms.
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The main conclusions from the investigation are as follows:

1. The finite-difference method gave reasonable predictions for heat transfer, sur-

face streamlines, Mach number profiles, and boundary-layer thickness on the test con-

figuration without blowing for both laminar and turbulent flow. Reasonable predictions

for heat transfer on both the leading edge and slab were also obtained with nonuniform,

discontinuous blowing at the leading edge.

2. Just aft of the leading edge, the turbulent boundary layer was apparently lami-

narized. At NRe,_ = 2.6 × 105, the boundary layer remained essentially laminar to

the end of the slab (5 nose diameters along the chord from the leading edge). At

NRe,_ -- 9.3 × l05, transition back to turbulent flow occurred at about 2 diameters from

the leading edge. Predictions from both eddy-viscosity models for maximum values of

the ratio of the mixing length to the boundary-layer thickness (g/5)ma x of 0.05 were

then in reasonable agreement with data. These results were based on comparisons of

theoretical predictions with all measured quantities mentioned above.

3. For the blowing rates used in this investigation, leading-edge blowing had no

appreciable effect on either the laminarization phenomenon or transition.

4. Comparison of values for a laminarization criterion indicated that the turbulent

boundary layer on the leading edge for these tests was much more susceptible to laminar-

ization than a comparable two-dimensional flow.

5. This increased susceptibility to laminarization is tentatively attributed to the low

turbulence levels of the boundary layer on the leading edge as evidenced by the relatively

small values of (//5) max required to obtain agreement of theory with experiment.

6. Measured heat-transfer rates on the leading edge over a 4-inch span interval

agreed with values predicted for the minimum injection rates measured on the leading

edge over the same 4-inch interval in span. This agreement with predictions for mini-

mum injection was attributed mainly to the smaller injection rates near the apex of the

leading edge. The influence of the partial blockage of injection at the thermocouple loca-

tions on the leading edge was considered minor.

7. Downstream of the leading edge on the thin-skinned slab, the measured heating

rates were also generally in agreement with predictions for the minimum injection rates

on the leading edge. These results are attributed to the smaller injection rates near the

apex of the leading edge due to the spanwise distribution of permeability.

8. Blowing on the leading edge increased the magnitude of the cross-flow velocities

by as much as an order of magnitude. Therefore, the assumption of small cross flow,

which was not used in the present method, would not be expected to provide reliable pre-

dictions with large leading-edge blowing.
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TABLE I.- LOCATIONS OF PRESSURE ORIFICES USED

Chordwise location x/d at spanwise location z/d of-

9.18 11.18 13.18

-0.524

-.175

.087

.349

mumm_

.698

.911

1.411

2.161

3.161

-0.439

0

.262

.611

.911

1.411

2.161

3.161

4.161

5.161

-0.524

-.175

.087

.349

.698

.911

1.411

2.161

3.161

4.161

4.161
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TABLE H.- LOCATIONS OF THERMOCOUPLES ON

POROUS-LEADING-EDGE MODEL

Chordwise location x/d at spanwise location z/d of-

8.85 9.35 9.85 10.35 10.85 11.35 11.85 12.35 12.85

-0.611

-.262

0

.439

1.223

2.150

m_m_

m_mm

m_m_

_m_m

ml_m

_mmm

_mm

1.223

1.650

2.900

3.650

-0.349

-.087

.175

.524

mnm_

3.150

4.150

mimm

_mmD

1.223

2.650

3.650

-0.611

-.262

0

.439

1.223

1.650

3.150

_m_m

--mml

Dm.--

BE----

--mU--

1.223

1.650

2.150

-0.349

-.087

.175

.524

1.223

1.650

2.150

m--m--

n_m

B.m.

m_m_

1.650

_m_m

_mmm

wml--

rim--.

-0.611

-.262

0

.439

1.223
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SWEPT INFINITE CYLINDER

% =w;_ (-):o

s.%_#_,o._.., c_o.&Wlo__

_ON
2

(a) Idealizedflow model.

0\ /.-d12 * 0.50 in.

./ /

/-AFT END OF PORO %'%u,-I _,:,,_,
_\ /,,_o,_o_,oo__oo,,

_ 7 HEAFTRANSFER/VIODEL _

-_-'_'-- 1/4 in. '_%

(b) Test model configurations.

Figure 1.- Basic model configuration and coordinate definitions.
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Figure 2.- Pressure model.

Figure 3.- Plastic modelused with phase-changetechnique.
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Figure 4.- Porous-leading-edge model.

F LARGE

RAKE

SMALL RAKE

(a) Photographs of rakes.

Figure 5.- Pitot pressure rakes used for boundary-layer surveys.
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SIZE OF ORIGINAL CIRCULAR TUBING

I.D., in. O.D., in.
SMALL RAKE 0.030 0.050

LARGE RAKE .040 .060

k.,,=-
SMALL RAKE LARGE RAKE

(b) Sketch of plot tubes. Dimensions are in inches.

Figure 5.- Concluded.

Figure 6.- Plastic tip probe and alinement jig for measuring injection rates.
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Figure 8.- Sketch of six-block heat-conduction model to illustrate method and notation. Model is assumed two dimensional;

that is, derivatives of all quantities in z-direction are zero.

0 t
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0o

30 ° 30 _

\ 1 /
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ond 12.85)

Figure 9.- Block configurations used to reduce data from porous leading edge. Thermocouple locations are given in table II

and designated as x in sketch.
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Figure 10.- Chordwisedistributionof staticpressures.
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Figure11.- Comparisonof theoryanddatafor laminar flow. NRe,== 0.92x 105;m = 0; z/d = 10.6.
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(a)NRe,== 2.5x 105.

(b) NRe,®= 9.3 x 105.

Figure 14.o Comparisons of computed streamlines with surface oil flow lines for rn = O.
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(b) Pc = 405 psia.

Figure 18.- Experimental chordwise variation of mass flow through porous leading edge. Shaded band is for 7.85 < z/d =<12.85.
]'he x symbols indicate values measured at locations of thermocouple junctions within the same z/d interval.
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DISCUSSION

GEORGE R. INGER, McDonnell Douglas Corp.: I notice in your modeling of the

eddy viscosity which is incorporated in your calculations, that in spite of rather large

rates of mass transfer you ignored the explicit effect of mass transfer in the eddy model.

HUNT: It is true that the effect of mass transfer in the eddy models was not pre-

sented, but it wasn't ignored.

INGER: I'm sorry, I didn'tsee iton your slide.

HUNT: You are correct in mentioning that. Perhaps we should have presented it.

The effectof mass transfer on the eddy viscosity was incorporated through the Van Driest

damping function used in the near wall region of the mixing length model. A coefficient

in the damping term was made a function of the blowing rate.

INGER: Then you incorporated itthe same as the others ?

HUNT: Yes.

WILBUR L. HANKEY, USAF, Aerospace Research Laboratory: I have a couple of

questions. First, how did you startthe calculationsat the stagnation point,and did your

analyses check with the classical stagnation-pointsolution? In particular,I thought at

least in the simple turbulent theories, heating did not occur at the stagnation point but

near the sonic point.

The other question is, what proof do you have thatthe flow was turbulent in the

stagnation region ? Looking at the data I might contend thatthe flow was laminar all the

way to the slab and then becoming turbulent instead of relaminarizing as you contend.

HUNT: To answer your second question first,because I think I can answer that

one better, we compared quite a few simple theories on the stagnation line with the

experimental data and the agreement was acceptable. Everything we had indicatedturbu-

lentflow on the leading edge. Bushnell has made heat-transfer measurements on 60°

swept cylinders with the same leading-edge radius at these Reynolds numbers and con-

cluded that the flow was turbulent on and in the vicinityof the stagnation line.

I have to say I feel very strongly thatthe boundary layer is turbulent on the leading

edge. The only thing thatI have to verifythis is that quite a number of theories indicate

that itis turbulent there, not only this one. I tried simpler theories on the leading edge

that Beckwith reported on earlier, and I am quite confidentthat in the vicinityof the stag-

nation linethe flow is turbulent.

Now, as far as your firstquestion, how do we start the procedure on the leading

edge of the swept slab, I do know thatwe had to have a very small mesh size. Since
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Beckwith is the program man, he probably should answer this. Do you want to say any-

thing, Ivan ?

BECKWITH: As far as starting the solution is concerned, what we had to do was

just to take a number of very small steps, starting a finite distance away from the leading

edge, and the solution would converge to unique profiles and unique boundary-layer thick-

nesses corresponding to whether you had zero eddy viscosity or finite values, that is,

according to whether the flow was laminar or turbulent.

Now, I might just remark also on the other question as to whether or not the flow

was really turbulent at the leading edge. I think the strongest item might be the fact that

the heat transfer is above the laminar theory, and presumably the laminar theory is cor-

rect. Of course, the turbulent theory can be questioned, but the agreement over a range of

Reynolds numbers is convincing.

RAYMOND SEDNEY, Martin Company: I find it very difficult to understand why you

concluded you have relaminarization anywhere.

HUNT: I said relaminarization, but perhaps the term is laminarization.

SEDNEY: I want to use your term. I wonder if you have firm evidence for it.

HUNT: We have three different types of measurements and they all agree -

boundary-layer thickness, wall-shear direction, and heat transfer. I know this is not

answering your question, but the way I look at it, the data are your judge.
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METHODS OF ANALYZING PROPELLER AND ROTOR BOUNDARY LAYERS

WITH CROSSFLOW

W. J. McCroskey

U.S. Army Aeronautical Research Laboratory

Moffett Field, Calif.

and

H. A. Dwyer

,University of California

Davis, Calif.
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N70-21371

SUMMARY

Secondary effects in the boundary layers on propellers and helicopter

rotor blades produce skin friction and separation characteristics that differ
from those on classical two-dimensional airfoils. These effects can be anal-

yzed and computed by the methods described in this paper, which include two

approximate differential analyses and a finite difference numerical procedure.

The combined numerical and analytical results demonstrate explicitly the

detailed nature of laminar viscous flows on rotor blades and propellers.

INTRODUCTION

Rotating blades provide some of the most complex problems to be found in

the field of fluid dynamics. For example, a typical helicopter rotor in high

speed forward flight experiences centrifugal and Coriolis forces, separated

flow and stall phenomena, turbulence, periodic variations in flow speed and

direction, and compressibility effects. Furthermore, these phenomena occur

in complex three-dimensional patterns, and the local flow field around one

blade may be strongly influenced by the tip vortex and wake shed from another.

Present analytical tools available to designers are incapable of analyzing

these combined effects completely, partly because so little is known about

the viscous phenomena that occur in rotating environments. In this paper we

shall examine some of the complicating factors that occur in the boundary

layer on rotating blades, and we shall discuss some methods of analysis that

have been developed for treating laminar incompressible flows.

Basically, the flow around a propeller or helicopter blade section is

similar to that about a classical airfoil. In figure 1 we have depicted the

evolution of complications as one proceeds from the flows we know the most

about, which are two-dimensional steady flows about classical airfoils, to the

flows that we know the least about, which are the complex three-dimensional

unsteady flows in the rotating environment of helicopter rotor blades in

forward flight. We know from experience that the forces and moments produced
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on rotating blades resemble those on their two-dimensional counterparts, but
there are important differences also. Because of the similarity, we shall

refer to the chordwise flow as the primary flow, and because of the differences

caused by secondary effects, we shall refer to the flow in the spanwise
direction as the crossflow.

This is illustrated in figure 2, where the x-direction is the chordwise

direction and the z-coordinate signifies the spanwise direction. These mov-

ing, rotating coordinates are attached to the leading edge of the blade. If

we consider a helicopter rotor in forward flight, then a relative wind with

velocity V 1 approaches the blade in the plane of rotation. For a hovering

rotor or conventional propeller, a relative wind with velocity V2 approaches

the blade along the axis of rotation. This velocity is generally small com-

pared to flz for a helicopter in hover and is comparable to flz for a

conventional propeller.

Most of the previous analytical work on rotating blades of these types

was done by W. R. Sears and his co-workers (refs. 1-7) in the 1950's. Viscous

problems involving pure rotation were treated within the framework of the

small-crossflow approximation. Graham (ref. 7), Banks and Gadd (ref. 8), and

Velkoff (ref. 9) performed integral analyses, the latter being the first

attempt to include the translational velocity V I. Recently, McCroskey and

Yaggy (ref. I0) formulated regular perturbation expansions for forward flight,

and this formulation provides the basis for the first main part of this paper.

The basis for the numerical analysis used in this paper was developed by Dwyer

(ref. II) in connection with another problem. The most recent treatments of

rotating blades are by Warsi (refs. 12, 13).

The methods of analysis considered herein include a perturbation analysis,

an analysis of reduced or linearized equations, and direct numerical integra-

tion of the boundary-layer equations of motion. The perturbation analysis,

which evolves from small-crossflow and quasi-steady approximations, allows us

to reduce the number of independent variables from four to two, but the method

is not useful in predicting separation characteristics. We shall display the

results of this analysis for the flat plate case and use the derivations to

demonstrate the role and importance of the various secondary terms. The lin-

earized analysis is more relevant to problems involving separation and in

giving the qualitative details of the flow field. With the numerical analysis,

we examine the flow field without approximations and up to the point of sepa-

ration. Also the numerical calculations are used to evaluate the significance

of the approximations made in the other analyses.

We have only considered laminar incompressible flows; we have neglected

the effects of the complex trailing vorticity in the inviscid flow; and we

have not calculated the flow in the case of oscillating angle of attack.

Within these limitations, however, the combination of the three methods of

analysis gives us a complete theoretical understanding of the flow and

detailed knowledge of the origin of the various secondary terms, their size,

and their significance in affecting the primary flow.
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NOMENCLATURE

a, b

C

C L

C
P

f, F

g, G

i, m, n

P

P, Q

t

U

u
0

U
e

v

V1

V2

14

We

X

X

Y

Y

z, Z

constants

chord

lift coefficient

local pressure coefficient

chordwise flow velocity functions

spanwise flow velocity functions

indices

pressure

inhomogeneous functions defined in the appendix

time

chordwise velocity in boundary layer

reference velocity, _z + V I sin _t

chordwise velocity at outer edge of boundary layer

vertical velocity in boundary layer

translational velocity in plane of rotation

translational velocity along axis of rotation

spanwise velocity in boundary layer

spanwise velocity at outer edge of boundary layer

curvilinear chordwise coordinate

Cartesian chordwise coordinate

curvilinear coordinate normal to airfoil surface

Cartesian coordinate along axis of rotation

Cartesian spanwise coordinates

angle of attack

boundary-layer thickness
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E

n

p

p

T

T
B

X
expansion parameter, --

z

Z

spanwise coordinate, --
c

vertical boundary-layer coordinate, defined as used

V1

expansion parameter, Tz

kinematic viscosity

x
chordwise coordinate, --

C

density

dimensionless time, also shear stress

local instantaneous Blasius shear stress (two-dimensional)

unit potential function

azimuthal angle

blade angular velocity

ANALYSES

General Formulation

Because of the slender planform of the rotating blades that we shall

consider, it is advantageous to adopt Cartesian axes (X,Y,Z) fixed to the

leading edge of the moving blade, as shown in figure 2. We have utilized a
left-handed coordinate system, so that we may retain standard two-dimensional

terminology for the primary flow and denote Z as the spanwise direction.
Thus, the blade rotates about the Y-axis, and this axis may translate either

along or perpendicular to itself.

In the case of translation along the Y-axis (i.e., a propeller), the

translational velocity V 2 influences the boundary layer only by virtue of

its effect on the contraction of the propeller slipstream, which produces an

inviscid crossflow velocity, We .1 This problem is essentially a steady,

quasi-two-dimensional one in rotating coordinates. However, in the case of a

helicopter rotor flying forward at velocity V1, the translational velocity

approaches the blade at a yaw angle _ = at relative to the leading edge;

therefore, the problem is both highly three-dimensional and unsteady, even in

the rotating system. We shall see shortly the magnitude of the complications

introduced by V 1.

IThis inviscic :rossfl can be large for a hovering helicopter rotor,

but it decreases rapidly wit_, increasing V 2.
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The appropriate laminar f ow equations for the curvilinear boundary-layer

coordinates shown in figure 2 have been presented in reference i0, and are

the following:

8u _v 8w

continuity 8--_+ _+ _-_= 0 (i)

x-momentum
_u _u _u

_u + u + v + w 2_w Cos (_ = _
E; Yf EE-

82U - i _I0 + f_2X (2)

_y2 p 8X

z-momentum
8w 8w 3w 3w

+ U + V + W + 2_U COS (_ = _)
8t _ _

_2W 1 _p + _2 z
2 p 8Z

8y

(3)

Here _ is the angle between the x and X axes, and the pressure gradients

are related to the potential flow as follows:

3U 3U 8U

1 3p _ e + Ue e + We e 2flWe _ f12X
p 8x _t 8x _z

_U _U 8W

e + Ue e e _2 x (4)= 8-E- _-}--+ We 8x

_W 3W 3W

_!_p= e+u e e ep _z 3t 3-x--+ We _--z-+ 2_Ue - _2Z

3W _U _W

e+u e e e_t _--z--+ We _z _2Z (5)

Mathematically, equations (i) - (3) can be classified as parabolic, with

initial value problems posed in the x, z, and t directions, a boundary value

problem posed in the y-direction, and inhomogeneous "forcing functions"

given by equations (4) - (5).

The boundary conditions for equations (i) - (3) are no-slip at y = O,

and u = Ue, w = We at y = 6. In general, the determination of Ue and We

is extremely difficult; in this paper, we shall use the salutions of refer-

ence i0 for infinite blades with constant circulation, given below.

3¢
Ue = (_z + V 1 sin 2t)

(6)

Ve = (2z + Vl sin _t) _ = 0 (7)

We = 2(¢ - 2X) + Vi cos 2t (83
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The use of _ = # (X,Y = 0, t), which is the potential solution for two-

dimensional flow of unit mean speed past the airfoil section in question, is

a direct extension of the solutions of Sears (refs. i, 2).

The nonuniform thickness of the boundary layer can cause complications

in obtaining solutions, and therefore, it is convenient to introduce a coor-

dinate transformation that reduces the variation in boundary-layer thickness.

The ones utilized in the present paper are

x /_z + V l sin _t z-- -- T=_t
c ' D = Y/ 2_x ' _ = c '

for the perturbation analysis and

_ = x__ /_z + V 1 sin _t (____) zc ' n = y 2vx ' _ = c ' T = _t

for the numerical calculations. The latter case introduces an extra term

into the transformed momentum equations, but this is accompanied by rendering

the boundary-layer thickness more nearly constant.

Although the boundary conditions in the n-direction are obtained from

the inviscid flow equations, the initial conditions in the t-, x-, and

z-directions must be obtained by other means. Since we are only interested in

the periodic solutions ultimately obtained at large t, we may start at t = 0

with any convenient set of velocity profiles, such as the two-dimensional solu-

tion. Along the leading edge, x + 0, the boundary-layer equations reduce to

a Blasius flow for sharp bodies and to a two-dimensional stagnation-point flow

for blunt bodies; therefore, these classical solutions represent the proper

initial conditions in the x-direction. In the z-direction, however, the

crossflow in the boundary layer is both positive and negative, and there is

no "starting position" for the numerical computations where w is either zero

or known beforehand. Also, great care must be exercised when the crossflow

velocity changes sign, lest numerical instabilities appear in the finite

difference techniques.

The problem of negative crossflow was overcome by requiring that the

finite difference operator (u/Sx + w/Az) in the momentum equations be positive.

The lack of velocity profiles at an initial value of z was handled by an

iterative technique described in the section "Direct Numerical Integration."

As will be seen from the results, this iterative method of calculation proved

to be very accurate in predicting the velocity profiles at a given z station.

Perturbation Analysis

Our basic procedure in this case is to perform a regular perturbation

expansion of the unsteady, three-dimensional equations of motion, employing

quasi-steady and small-crossflow approximations to determine the order of
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magnitude of the various terms in equations (I) - (5). In this section only

the main features of the analysis will be described; further details are given

in the appendix.

Although the perturbation analysis is suspect near separation, it can be

used to predict most of the boundary-layer flow on rotors and propellers.

Furthermore, it is extremely useful in providing a basic theoretical under-

standing of the relative significance of various crossflow and unsteady

effects and the mechanisms by which these effects influence the primary flow.

From a computational standpoint, the perturbation analysis offers the advan-

tages that, first, the equations are reduced from four to two independent

variables, and second, all the equations except the lowest order primary flow

equation are linear.

Implicit in equations (2) and (3) is the classical boundary-layer

approximation, 3/3x << 3/_y, valid by virtue of the "thinness" of the viscous

layer. The small-crossflow approximation that we invoke is actually a cross-

flow de_vative approximation, expressed as _/_z << 3/_x. This inequality

is generally appropriate for propellers and helicopter blades by virtue of

their "slenderness," or high aspect ratio. Likewise, the Coriolis and centri-

fugal forces in the x-momentum equation are relatively small, as shown in

references 3 to i0, although they are relatively large in the z_momentum

equation.

The quasi-steady approximation of neglecting partial derivatives with

respect to time is based on the observation that the fundamental reduced

frequency is _x/(_z + V l sin _), which is generally small. 2 In reference i0_

this reduced frequency was shown to be of the same order as (3/3z)/(_/3x), so

that the small crossflow and quasi-steady approximations are mutually consis-

tent. Accordingly, these approximations should be employed only where

_x/(_z + Vl sin _) << i.

From the criteria just described, it is clear that two ratios are vital:

a length parameter, E = x/z, and a velocity parameter, _ = Yl/_Z. These are
incorporated into the solutions as follows:

---- O 2 'U (i + U sin T)[f ($ n) + ef_(E,n,T) + c f2(_,n,T) + .]
_Z (9)

W ' ' 2 '

_--_: Ucos T go(E,n) + ¢gl(n,¢,_) + e g2(n,E,r) + (10)

where

x l_z(l + v sin fit)
= _ n = Y_ 2vx Z = _t = _ (Ii)

2We should mention that the dynamics of highly loaded rotors may intro-

duce higher harmonics of blade motion, and the time derivative of angle of

attack is an important parameter (cf. the recent paper by Harris, ref. 14).
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and

, p COS T '
fl (_,q,T) = 2 FII (_'ri)

(i + _ sin T)

(12)

, F20 (_'n)
f2 (¢'n'_) = 2 + p sin T ,3 F21 (g'q)

(1 + p sin "r) (1 + p sin _)

+ p2 COS2T F22(_,rl ) (13)
#

(i + p sin T_

etc. Note that the F's are functions only of g and n. The appropriate

differential equations are given in the appendix.

The special case of a flat plate blade, for which the F's are universal

functions independent of g, was examined in reference i0. These results are
, !

shown in figure 3 and table i, including corrected values for F21 and F22.

It should be mentioned that FII has been split into a component Flu due

to unsteady effects, and a component of opposite sign Fly due to yaw effects.

The analogous universal functions for the crossflow are shown in figure 4.

It is interesting that the analysis outlined above for unsteady three-

dimensional flows incorporates the physical and mathematical features of

several previous studies for less complicated flows. Tan (ref. 4) outlined

the perturbation expansion procedure for pure rotation, and Liu (ref. 5) cal-

culated the expansions to second order in E for both the flat plate and the

"cubic airfoil," which has U e = 3Uo(g - 63). Liu also generalized the geo_

metry to include spanwise taper of the blade and cases where the axis of rota-

tion is not at the leading edge. This offset of the axis of rotation produces

a spanwise flow that, in a quasi-steady sense, is equivalent to the crossflow

produced in forward flight by V1 cos _. To first order in e, this effect is

represented by Fly, equal to Liu's FII for the flat plate, and it helps

to delay separation when w is negative (i.e., 90 ° < _ < 270°).

On the other hand, the sinusoidal variation in Ue is analogous to that

for two-dimensional unsteady flows studied by Lighthill (ref. 15), Moore

(ref. 16), and subsequent investigators. To order _, this unsteady effect is

represented by Flu , equal to Moore's fo for the flat plate, and it helps

to delay separation when the blade is accelerating (e.g., when

(_/_t)(V 1 sin _t) > 0). In the rotor case, this corresponds to the rear half

of the rotor disc (i.e., -90 ° < _ < 90°).

Finally, we should mention briefly the limits of validity of the pertur-

bation analysis. We shall return to this point in the Results and Discussion

section, where we explicitly compare the results of the perturbation and

numerical analyses, but here we make two observations. In the first place,

the expansion parameter E = x/z enters to first order in the forward flight
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case, while only to second order in the case of pure rotation with zero off-
set. Hence, the perturbation analysis should be valid for larger values of
x/z for a propeller or hovering helicopter rotor than for a helicopter blade
in forward flight. Secondly, each term in the expansions for forward flight
contains a factor of the form

n m

(i + U sin $)n+m

where m < n and $ = _. These factors must be small with respect to one if

the series expansions are to converge. Therefore, it is obvious that larger

values of E = x/z are allowed when 0 < $ < 180 ° than when 180 ° < $ < 360 ° ,

and that our analysis will break down first in the vicinity of $ = 270 ° .

Direct Numerical Integration

The most straightforward approach to rotor and propeller boundary-layer

problems is direct numerical integration of the finite-difference equations.

We mentioned earlier that we are faced with a set of parabolic equations

which must be solved as a combined initial and boundary value problem. There-

fore, the choice of our numerical method is based on its ability to model the

diffusion and convection processes in the boundary layer by starting from the

initial conditions and then marching forward in 6, _, and _, simultaneously

satisfying all the boundary conditions in n. The method is an extension of

the one described in reference ii, which, in turn, is a three-dimensional

extension of the Crank-Nicolson implicit method frequently used in

two-dimensional boundary-layer computations.

An essential feature of the set of parabolic equations is that second

derivatives occur only in the n direction. When we evaluate derivatives

along this diffusive coordinate in an implicit manner, the resulting set of

simultaneous equations will have a tridiagonal matrix form and can be evalu-

ated by the efficient algorithm developed for those types of simultaneous

equations. The time-like derivatives, 3/3_, 3/3_, and 3/3T are evaluated

at the center of four grid points in either the E, _ or 6, T planes, 3 with

an averaging process directly analogous to the Crank-Nicolson method in
alone. To avoid the kinds of instabilities associated with "time reversals"

when the crossflow becomes negative, it is necessary to choose the grid spac-

ings such that (u/Ag + w/A_) > 0. The reasons for this requirement were

pointed out by Krause (ref. 17), and it appears from numerous computations

that if this criterion is satisfied, the step sizes in the E and _ or the

and • directions are not restricted by stability considerations.

The difficulty in starting the calculations at some initial z=station

was mentioned earlier. This was handled by the following iterative technique,

Starting conditions at a particular initial constant z were obtained by

3Reference ii may be consulted for the specific details of the finite

difference quotients.
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first assuming the local primary flow to be the corresponding two-dimensional

one and the crossflow to be zero. Then iterations from these profiles were

calculated from the full three-dimensional equations and boundary conditions.

The outer boundary conditions were kept constant at their local values and

successive iterations were applied until the velocity profiles no longer

changed.

The validity of this approach, which neglects the upstream history of

the flow, was checked by comparing the results of marching in different direc-

tions, for the flat plate case. That is, the iteration technique was applied

first at a large value of z, where the crossflow is small, and the boundary-

layer flow was calculated inward from that station to a station near to the

axis of rotation. Next, the iteration technique was started near the axis,

where the actual crossflow is large, and the calculation proceeded outward.

The results of these two different calculations are shown in figure 5, where

the chordwise shear is normalized by the local Blasius, or two-dimensional,

value. The agreement is better than 1 percent over the entire blade. As

might be expected, the outside-in calculation is faster, because fewer itera-

tions are required to relax from the two-dimensional solution to the correct
three-dimensional flow.

The numerical scheme was originally programmed for three-dimensional

steady [_, _, C) problems, and this was modified for two-dimensional unsteady

[_, _, _) problems by simply replacing w[3/_z) by _/3t. At this writing the

program has not yet been extended to the full three-dimensional, unsteady

[_, q, C, T) problem. Therefore, the calculations for such problems are best

handled at present by an iterative scheme. Since the forward marching in the

z-direction is performed after sufficient iterations on the assumed initial

profiles, it seems natural to start the calculations as a two-dimensional

unsteady problem with small crossflow, that is, first integrate the continu-

ity equation and both unsteady momentum equations, neglecting all derivatives
with respect to z. Then the z-derivatives are estimated and iterations

are performed much in the same manner as in the perturbation analysis. A

limited number of such calculations have been performed for the flat plate.

The results agree well with the full perturbation solution, which is the

only basis for comparison at the present time.

Finally, we should briefly compare the present implicit method with the

recent investigation of Warsi [ref. 123 . He employed an explicit scheme,

based on the method of Der and Raetz [18), which seems to have a practical

problem of slow convergence and requires very small step sizes near the leading

edge. Warsi's results for the flat plate are also shown in figure 5. Much

longer computation times are required, for example, 2-1/2 hours on an IBM 360

computer for each curve shown versus i to 2 minutes on an IBM 7044 computer

required by the present method to carry the results to x/z = 1.2. Further-

more, Warsi's results appear deficient in two other important respects.

First, he obtains two distinct curves for different values of z, whereas

both the present calculations and the perturbation analysis show that T/y B

is uniquely determined by x/z. Secondly, Warsi's results disagree signifi-

cantly with the perturbation analysis for virtually any finite value of x/z.

Intuitively, one would tend to feel that disagreement at large x/z would

constitute an indictment of the small crossflow assumption, but disagreement
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at 0.002 < x/z < 0.02 would seem to indicate fundamental errors in his numer-

ical calculations. This conclusion is strengthened by the present numerical

calculations, which agree with the perturbation analysis to much larger values
of x/z.

Linearized Analysis

If we wish to analyze the boundary-layer flow in regions where the small

crossflow and quasi-steady approximations fail, it may prove fruitful to look

at another simplified set of equations. In this case, we retain the complete

coupling between the primary and secondary flows, but we introduce two dif-

ferent assumptions that should considerably simplify the analysis without

destroying the dominant features of the problem. Both assumptions are quite

good in the case of a flat plate; their validity and utility for flows with

strong adverse pressure gradients is currently under study.

The first assumption is that the crossflow derivatives are the same in

the boundary layer as they are in the free stream, that is

3U
3u e _

3z 3z _x

_W
3w e
__ = 0
3z _z

The second assumption is similar to an Oseen-type linearization, that is,

3u 3u 3u

u'_- + v'_-y_ a 3---_-

_w _w _w

u-_-+ V'_y_ a 3--_-

where a is an arbitrary constant, say Ue/2.

Under the foregoing assumptions, equations (2) and (3) become

Ou + a _u 32u 1 _ {? 3_.__,_
_-T _-x = _ + _2x + _ \- - _x]W (14)

_y2 p _x

_w _w 32w 1 _ + Q2 z _ 2Qu (15)

with the same boundary conditions as before. We observe that there are no

z-derivatives in the equations; rather, z merely plays the role of a param-

eter influencing the inhomogeneous terms. Therefore, we are dealing with a

coupled parabolic system, with linear equations of the form
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Uyy u t - ux = g(x)w + fl(x,t;z) (16)

Wyy - w t - wx = bu + f2(x,t;z) (17)

This set of equations resembles a pair of heat diffusion equations with heat

sources (or sinks) in two time-like variables, t and x, and one space-like

variable, y. Furthermore, the heat sources (or sinks) are comprised of fl

and f2, which are uniquely determined by the potential flow, and the coup-

ling terms, g(x)w and bu. The x-momentum coupling term, g(x)w, represents
the net difference between the Coriolis force and the crossflow momentum flux.

The z-momentum coupling, bu, is just the Coriolis force; if there were no

Coriolis coupling between the x and z equations, the equation for the

crossflow could be solved independently of the primary flow.

To date, attempts to solve equations (14) and (15) in closed form have

not been successful. Hopefully, the large body of literature available on

coupled parabolic systems will be helpful.

RESULTS AND DISCUSSION

Comparison of Perturbation and Numerical Analyses

The significance of the approximations employed in the perturbation anal-

ysis can be partially assessed by a detailed comparison with exact numerical

calculations of the same flow field; for illustrative purposes, we shall con-

sider the flat plate. Because the numerical scheme has been programmed in

three independent variables, this evaluation will be done in two parts.

First, we shall examine the small-crossflow assumption by considering the

steady problem of pure rotation, corresponding to a propeller or hovering

helicopter rotor. In the second part, we shall evaluate the quasi-steady

approximation in the case of a sinusoidally-varying free stream velocity for

a two-dimensional boundary layer.

Basic effects of rotation.- An essential result of the perturbation

analysis for the flat plate in pure rotation is that the corrections to the

basic Blasius primary flow profile are uniquely determined by x/z. As men-

tioned earlier in connection with figure 5, this result is verified by the

exact numerical solutions.

Velocity profiles at small and large values of x/z are shown in fig-

ures 6 and 7. Considering first the crossflow profiles, we see that for

x/z << i, the centrifugal force pumps the fluid outward near the bottom of the

boundary layer. However, the flow at the top of the boundary layer is pulled

inward by We . This is a characteristic of the coordinates we have used;

the potential flow for the flat plate follows circular arcs, and there is

zero radial flow at the outer edge of the boundary layer. At large x/z, the

Coriolis force in the crossflow direction becomes increasingly important, and

the spanwise flow is inward throughout the boundary layer.
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At the same time, the x-component of centrifugal force exerts a strong

accelerating force on the primary flow at large x/z, increasing the wall

shear and "stabilizing" the boundary layer, as shown in figure 7.

The perturbation solutions shown in figures 6 and 7 are carried out to

order e2, and at e = x/z = 0.7, which is hardly a small value to be using

in a perturbation expansion, rather large errors obtain. The reason is that

the effects of the crossflow derivatives, _w/Sz and _u/_z, have been over-

estimated. However, if we add the next term in the expansion for the primary

flow, F40 , that is,

2 4

+
TB

the agreement is better, as shown by the solid symbols in figure 5. Even so,

we must conclude that x/z = 0.7 is too large to apply the perturbation anal-

ysis accurately.

The main conclusion that we may draw from this comparison of perturba-

tion and numerical results is that the small crossflow perturbation analysis

does, in fact, correctly order the relative magnitudes of the various terms

in the boundary-layer equations. Furthermore, the perturbation solutions are

surprisingly accurate, especially if the expansion is carried as far as the

second correction term, F40 , (i.e., to order e_).

Basic unsteady velocity effect.- The effect of a sinusoidally-varying

external flow is of considerable interest in general studies of unsteady

boundary layers. Within the framework of the development in the Perturbation

Analysis section, the expansion parameter e = x/z plays the role of a

reduced frequency, fx/U, where U = fz, and p = VI/U represents the ratio

of the fluctuation in free-stream velocity to the auerage free-stream veloc-

ity. We shall see in the succeeding paragraphs that even more important is

the ratio of V 1 to the in8%an%aneou8 free-stream velocity, fz + V 1 sin ft.

As in the rotating case, the results can best be summarized by the wall

shear; accordingly, figure 8 shows the local instantaneous shear normalized

by the local instantaneous Blasius shear, for both the perturbation and numer-

ical solutions. Considering first e = 0.1, we see that the two agree well

for all values of T = fit, just as rotating solutions agree well for e << I,

even though p has the rather large value of 0.57.

However, for e = 0.29 and U = 0.57, the perturbation analysis produces

large errors in the vicinity of T = 37/2, where the ratio of fluctuating

velocity to instantaneous free-stream velocity is greater than unity. Even

if more terms are added, for example,
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2.555 eU cos T 1.414 e2_ sin T
--=1+ +
•r B

(i + p sin T) 2 (i + U sin T) 3

0.8158 e2_ 2 cos 2 T
+

4
(1 + _ sin _)

1.107 e3U cos T 2.112 e3_ 2 sin T cos
+

4 5
(1 + U sin z) (1 + _ sin T)

1 136 e3p 3 cos 3 T
+ " + (19)

6
(i + _ sin T)

(The first three terms are identical to the result of ref. 16.) The series

converges so slowly at this large value of _ that poor results are obtained
for _ < T < 2_. On the other hand, the results are very good for 0 < • < _,

where V1/(_z + V1 sin T) is small and the series converges rapidly.

Finally, we observe that the inertia effects tend to "stabilize" the

boundary layer for -_/2 < _ < _/2 and to "destabilize" the boundary layer

for _/2 < T < 3n/2. For a helicopter, this corresponds to the rear and front

halves of the rotor disc, respectively.

The main conclusions that we can draw from this discussion are, first,

that the quasi-steady perturbation analysis correctly orders the inertia

effects in the boundary layer, and second, the quasi-steady approximation

implies that both E and _/(i + u sin _), that is, the ratio of the fluctuating

free-stream velocity to the instantaneous free-stream velocity, are small.

The latter implication is not present in the case of pure rotation.

Laminar Separation Characteristics of Airfoils

Detailed numerical analyses of the flow over an NACA 0012 airfoil

section show that crossflow and oscillating velocities influence the separa-

tion characteristics of rotor blades and propellers. For the computations

described below, the angle of attack was taken to be zero, where the cross-

flow and unsteady effects are greatest. The potential flow was calculated

using Theodorsen's (ref. 19) method for the primary flow and equation (8) for

the crossflow. It will be helpful to keep in mind that for steady, two-

dimensional flow, laminar separation occurs theoretically at x/c = 0.695

for this airfoil at _ = 0. We should mention again that x is the curvi-

linear boundary coordinate along the surface of the airfoil.

Effect of rotation on separation.- The qualitative effects of rotation

are very similar to those for the flat plate, as indicated by a comparison

of figures 6 and 9, where the NACA 0012 crossflow profile at x/c = 0.63

and z/c = 1 is shown. The centrifugal pumping effect is evident at the

bottom of the boundary layer, but the inviscid flow pulls the spanwise

velocity inward in the outer 75 percent of the boundary layer.
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The crossflow has a considerable effect on the primary flow at this

large value of x/z, as shown in figure I00 Shown for comparison is the

profile at the same chordwise station, but at z + _ where the

two-dimensional solution is approached.

The large change in "fullness" of the two profiles in figure I0 is

reflected in the large change in wall shear, that is, the curve labeled

"x/c = 0.63, varying z" in figure ii. On the other hand, near the leading

edge where the chordwise pressure gradients are larger, the effect of rotation

is much less, as indicated by the curve for x/c = 0.186 in figure Ii.

If we consider a fixed value of z/c, say 1.0, and move along the blade

in the chordwise direction, we see from the dashed curve in figure ii that the

wall shear rises to many times the local two-dimensional value, since the lat-

ter vanishes at x/c = 0.70. The separation point in the rotating case is

farther aft,,as shown in figure 12, where we see that the rotational forces

are particularly important for z/c < 4. This trend obtains in the analyses

of Liu (ref. S) and Banks and Gadd (ref. 8), and in the experiments of

Himmelskamp (ref. 20).

Also shown in figure 12 is a line denoting the boundary between favorable

and adverse chordwise pressure gradients. The shape of this boundary for

z/c < 2 is purely an inviscid phenomenon that we shall discuss later. Here

we merely observe that there is no adverse pressure gradient at sufficiently

large values of x/z; therefore, the separation point moves completely off

the airfoil somewhere between z/c = 1.5 and 2.

Effect of oscillating velocity on separation.- The unsteady effects on

the NACA 0012 airfoil are also qualitatively similar to those on the flat

plate. That is, the wall shear increases while the velocity is increasing

and decreases while the velocity is decreasing. The separation character-

istics are shown in figure 13 as a function of time. We should mention that

at = n_/2 (n = 1,3,5, etc.) are the times when the acceleration of the free

stream is zero. For this example, separation is advanced to x/c = 0.59 at

at = 1.3n, corresponding to _ = 235 ° for a helicopter rotor, and delayed

to x/c = 0.80 at _t = 1.8_, or _ = 325 ° .

Combined Rotation and Translation

We turn our attention now to the more specialized and more difficult

problem of a helicopter rotor in forward flight. Here unsteady effects are

important because of the oscillating velocities Ue and We; spanwise gradients

are significant because of the linearly varying velocity _z; and the cross-

flow is larger than for a conventional propeller because of the spanwise

component of V I. First, let us consider the crossflow velocity profiles

on a flat plate, shown in figure 14. In this and the next figure, the curves

are drawn out to the point where u/U e = 0.99, which is taken to be the edge

of the boundary layer. From the locations of these outer points, we see

the thinning of the boundary layer on the advancing side, where _ ÷ 90 ° ,

and the thickening of the boundary layer on the retreating side, where
+ 270 ° .
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A striking feature of these results is that the crossflow due to

translation dominates the spanwise velocity over most of the rotor disc for

the conditions indicated. For _ = 90 ° and 270 ° , the crossflow is primarily

that due to rotation, and the principal effect of the translational motion

V 1 is to thin or thicken the boundary 1 ayer. However, for points only 45 °

away, the translational contribution clearly predominates. This effect is

further magnified as the flight velocity is increased, or the distance from

the leading edge decreased, but it is virtually independent of z.

The crossflow in the case of adverse pressure gradients is qualitatively

the same, as indicated in figure 15. These profiles were obtained for

linearly decelerating flow, Ue = (i - _). The scales of the ordinates and

abscissas are the same in figures 14 and 15, and by comparing these figures

closely, we see that the boundary layer is thicker for the adverse pressure

gradients as would be expected. Also, the centrifugal pumping effect at the
bottom of the boundary layer is slightly greater. The predominate effect over

most of the rotor disc, however, is still the inviscid crossflow at the outer

edge of the boundary layer, and the crossflow due to translation is generally

large compared to the crossflow due to rotation. This important result was

presented first in reference i0 and discussed there in somewhat greater

detail.

The primary flow in cases with pressure gradients is subjected to the

influences described under Laminar Separation Characteristics of Airfoils,

except that there is a larger crossflow. Since separation results are not

available at this time, we shall focus our attention now upon the individual

factors that can be expected to alter the two-dimensional steady results for

a given airfoil.

Discussion of Secondary Terms

If we are to understand fully the viscous flow on propellers and rotor

blades, it is important to be able to identify the secondary effects and to

determine the physical mechanisms by which they influence the primary flow

around the blades. The continuity and chordwise momentum equations are

au _v aw

ax ay az

au au a2U aUe a au aWe
u--+ v --- v _- Ue _= m (Ue _ u) - w --+ 2_w + We

aX _y aV 2 aX at aZ aX

Using the perturbation analysis as a guide, we have written the dominant or

primary terms on the left-hand side, and the secondary terms on the

right-hand side of the equations.

(20)

(21)

Now let us look at the size of each individual term in these equations

for flow conditions corresponding to that in figure 14. These terms are dis-

played in figures 16 to 18. Considering first figure 16, the primary
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momentum terms, we can see the net effect of the secondary terms by comparing

the dotted and solid lines. The secondary terms are plotted on the same

scales in figure 17, with a sign convention such that a positive quantity

exerts a favorable influence with regard to separation. We should mention

that the signs and magnitudes of the various terms depend upon the value

(i.e., where the rotor blade is in the plane of the disc), and for the value

of _ as shown in the figure, they generally tend to be a maximum. It is

interesting to note that for the conditions indicated, these secondary terms

tend to be comparable in size to the primary terms in the x-momentum equation,

even though their net effect is small. On the other hand, the crossflow

derivative in the continuity equation shown in figure 18 is quite small

compared to the primary flow derivatives.

Unsteady velocity effects.- We have observed earlier that the unsteady

effects due to oscillating velocity and sweep angle first enter to order

a_ = (x/z)(V1/_z) and are designated by the function Flu. Mathematically,

they enter through the terms so designated in equations (A6) and (A8) in the

appendix for the primary flow, and equation (A7) for the crossflow. The func-

tion F_u is modulated by cos _ and is positive, so that it acts favorably

on the rear half of a helicopter rotor disc. The unsteady contribution to
!!

F21 comes from the time derivative of the crossflow and from SFll/_t. rts

sign and phase are sqch that a favorable influence is exerted on the retreat-

ing blade. However, this is to order e2_ and hence less important than

Flu. The unsteady contribution to F_2 is always destabilizing and comes

from higher order unsteady effects in the chordwise flow.

Crossflow derivatives.- The crossflow derivative in the continuity

equation, _w/Sz, manifests itself in the primary flow momentum equation mostly

through the vertical velocity v. The physical effect is one of bringing
momentum from one strata of the boundary layer to another, and therefore it

is favorable with regard to separation when the perturbation in v is nega-

tive, which occurs when _w/_z is positive. In forward flight, this effect

enters to order e_ because the dominant crossflow is produced by V I cos _.

The gradient in the z-direction comes from the spanwise variation in the

boundary-layer thickness (i.e., 6 = (_z + V I sin _)-i/2). Separation is

delayed on the front half of the rotor disc by this effect.

The crossflow momentum derivative, w(Du/Dz), also enters to order eu.

This is because the largest crossflow is due to V 1 cos $, because u varies

linearly with z, and because the boundary-layer thickness varies inversely

with _. The mathematical expression is indicated in equations (A6) and (A8)

in the appendix. Physically, the effect of this term is to transfer momentum

from one spanwise location on the blade to another. A spanwise inflow has a

favorable effect with regard to separation, since the crossflow momentum flux

brings momentum from farther out on the blade, where the velocity is greater,

into the lower momentum regions closer to the hub.

Coriolis force.- The term 2_w represents a well-known rotational effect

in mechanics, but for a rotor in forward flight, most of the w term comes

from the translational motion, since V 1 cos _ is generally large compared to
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the centrifugal pumping effect.

forward, and to all orders in

w is positive.

The mathematical contribution is straight-

E the physical effect is a favorable one when

Centrifugal force.- This purely rotational force affects the primary flow

in two separate ways. In the first place, there is a direct contribution in

the x-momentum equation through the term _2X. This is an effect of order

e2 and is expressed through the function F20. It is favorable for all

x > 0.

The second effect is one of centrifugal pumping, which contributes to

order e2 to an outward component of the spanwise velocity w. This compo-

nent of w, in turn, couples with the primary flow through the continuity

equation, the crossflow momentum flux, and the Coriolis force. In the past,

this has been considered probably an important effect; however, the present

analysis shows that it is much weaker than generally or intuitively supposed.

Compared to the other effects it is unimportant for most helicopter rotors,

particularly in forward flight. However, it should be noted that the centri-

fugal pumping does increase as the adverse pressure gradient increases.

Crossflow-induced apparent pressure gradient.- The term WeCSWe/SX) in

equation (21) is one which has not been appreciated by most investigators of

rotor boundary layers, but it represents an effect that can be important in

influencing the separation characteristics. It arises as a combination of
the coordinates which we have selected and the method we have used to evaluate

the chordwise pressure gradient from the inviscid Bernoulli equation. An

alternate expression is given by

8We - We 2 (22a)
We _x

(22b)

Equation (22a) is valid in general, but equation (22b) is derived from the

constant-circulation solution of reference 10. In the special case of the

flat plate, this term has the simple form

W _-_We_ _Ue

etrans Iation_ x----_rotat ion - _t (23a)

Wer ot at ionk_x-----_rotation = _2X (23b)

with the result that the chordwise pressure gradient is zero, but in general

this is not the case. As an example, we refer to figure 12. The dashed line

in that figure indicates the boundary between favorable and adverse pressure

gradients. The term We(_We/DX ) and the x-component of centrifugal force

490

IJ- II  li II'II II IIIi li li li II II II b'



are sufficiently large to create a region of entirely favorable pressure

gradients sufficiently close to the axis of rotation.

This term exerts a favorable influence with regard to separation when it

is positive. It is interesting to note from equation (22b) that 3We/3X is

positive when _¢/3x is greater than 2. This corresponds to a chordwise pres-

sure coefficient Cp < -3 (i.e., for a blade that is developing rather large
lift). Of course, it is also important whether We itself is positive or

negative.

For actual rotors with complex induced flow fields, it may be difficult

to establish the magnitude of this term precisely. However, it appears that

for many practical problems we can evaluate it as follows: for a propeller

or helicopter rotor in hover, W e should perhaps be estimated from the geometry

of the slipstream contraction and the expression (_We/_X) = _[(_¢/_x) - 2]

should be_tilized. On the other hand, for a helicopter rotor in high speed

forward flight, the largest contribution to We comes from V 1 cos 4, and

again 8We/_X should be approximately _[(_¢/Sx) - 2]. It should be empha-

sized that this phenomenon is purely inviscid; hence, it has been called a

crossflow-induced apparent pressure gradient.

spanwise pressure gradients and crossflow boundary conditions.- The cross-

flow within the boundary layer is also strongly dependent Upon the potential

flow, by virtue of the spanwise pressure gradient serving as an inhomogeneous

term in the z-momentum equation and by the potential velocity, We, serving
as the outer boundary condition for w. We have seen in figures 6, 9, 14, and

15 how strongly the crossflow velocity profiles depend upon We; the remarks

in the preceding paragraph apply insofar as evaluating W e is concerned.

The spanwise pressure gradient is given by

3W _U _W

1 _ = e e e _2 z (5)- _ _z _t + Ue _--z--+ We _z

Intuitively, we would expect the spanwise pressure gradient to be negative
in the important regions near and downstream of the suction peak on the air-

foil sections, because the tip regions generally carry larger aerodynamic

loads. In other words, the largest term in equation (5) is Ue(_Ue/_Z), which

is always positive. This term should be given accurately by the McCroskey

and Yaggy (ref. i0) solution, _Uo(_/_x)2 , and _We/_t approximately by

-_V 1 sin _t. The term We(_We/_Z ) is positive for a hovering rotor developing

lift. It is the most difficult term in equation (5) to estimate in forward

flight, and its influence is probably the major reason that the largest span-

wise pressure gradients seem to occur in the vicinity of _ = 0, as pointed

out by Blaser (ref. 21).

Since the net result in any case is a negative spanwise pressure

gradient, this term contributes a small positive value of w. In turn, this

has an unfavorable effect upon primary flow separation by virtue of the

coupling of the crossflow derivatives, and a favorable one through Coriolis
coupling.
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SUMMARY AND CONCLUSIONS

In our analysis of the boundary layers on rotors and propellers, we have

demonstrated most of the essential features of the flow by means of relatively

simple analytical solutions. The approximations used in the perturbation

analysis have been investigated by direct numerical calculations. The

numerical analysis has also provided the detailed structure of the flow near

separation.

The limitations of the results obtained so far are threefold. In the

first place the separation results have been obtained for rotating three-

dimensional steady flows and for two-dimensional unsteady flows, but not for

the complete helicopter problem of three-dimensional unsteady flows. Second,

complete solutions for the potential flow, which serve as boundary conditions

at the outer edge of the boundary layer, are not available at this time,
and therefore the solutions for infinite blades with constant circulation of

reference i0 had to be used. Third, we have not calculated the flow for

blades with oscillating changes in angle of attack. Nevertheless, within

these limitations, the role of the various physical effects has been identi-

fied, and the laminar flow on rotating blades is now well understood.

r

From the present investigation we can draw the following specific
conc lusi ons.

i. The small crossflow approximation is valid for the flow over rotat-

ing airfoil sections, provided the ratio of chordwise distance from the

leading edge to the spanwise distance from the axis of rotation, x/z, is

small. This conclusion applies to helicopter rotor blades and many classes

of propellers. However, for the values of x/z appropriate to ship propel-

lers, the small crossflow approximation does not hold.

2. The flow field on a rotating flat plate is uniquely determined by

a Blasius'type boundary-layer coordinate and the length ratio x/z. For

flows on rotating airfoils with pressure gradients, the differences from the

two-dimensional solution can be correlated with x/z.

3. The effects of rotation can be important and beneficial with regard

to separation of the primary flow in regions of adverse pressure gradients.

Since these effects scale with Ix/z) 2, the maximum benefits accrue closest to

the axis of rotation.

4. The quasi-steady approximation for flows with oscillating chordwise

velocities is valid, provided the parameter e_/_l + _ sin at) is small.

5. The unsteady velocity effect has a favorable influence on separation

when Ue is accelerating and an unfavorable one when Ue is decelerating.

The effect is largest at small angles of attack. For a given blade geometry,

the unsteady effect is larger than the effects of pure rotation. The ordering

of these effects is e and e2, respectively.
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6. For a helicopter blade in forward flight, there is a substantial

inviscid crossflow due to translation, V 1 cos _t, and therefore the boundary

layer generally resembles the viscous flow over a swept wing. The perturba-

tion analysis shows that this swept wing effect influences the primary flow

to order _ and has a favorable effect with regard to separation on the front
half of the rotor disc (i.e., 90 ° < _ < 270°). If we add the second-order

effects, the maximum benefits accrue in the third quadrant, 180 ° < _ < 270 °,

where retreating blade stall is commonly presumed to begin. This may be one

reason the actual rotors have been observed to perform better than would be

expected on the basis of the steady-state two-dimensional section
characteristics of the blade.

7. The secondary effects that influence the primary flow have been

identified. Of these, the centrifugal force effect appears to be the least

important for helicopter rotor blades and slender propellers. The most

important effects appear to be time derivatives and crossflow derivatives.

Also important are Coriolis forces and apparent pressure gradients that are

induced by the potential crossflow. The latter effect has not been recognized

by most previous investigators.

8. There are few experimental data available for comparison with the

present investigation. Generally speaking, however, aerodynamic loads and

separation patterns have been observed that agree qualitatively with the con-

clusions outlined above. Future experimental programs should be directed

primarily at defining the locations and patterns of separated flows, at mea-

suring the direction of streamlines and the magnitude of the local skin

friction, and at developing a better physical model of turbulent crossflow.

9. For a more complete treatment of propellers and rotors, additional

analytical efforts are needed in two main areas. The first is the development

of methods to treat three-dimensional unsteady turbulent flows. Secondly,

better potential flow solutions are needed to serve as outer boundary condi-

tions for the viscous flows and to prescribe more accurately the chordwise

and spanwise pressure gradients.
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APPENDIX

PERTURBATION ANALYSIS FOR ARBITRARY PRESSURE GRADIENTS

As discussed in the Analysis, the equations governing the boundary-layer
flow are

Du Dv Dw
m + __ + __ = 0 (AI)
Dx Dy 8z

Du D2u DUe DUe DWe
- 2_w cos _ = v _ + _+ Ue _+ We

Dt Dy 2 Dt Dx Dx
(A2)

where

Let

Dw D 2W DWe
+ 2_u cos e -- _ +

Dt _-_ Dt

DUe DWe
_+ U e _+ W e _ (A3)

Dz Dz

D_(x)
De = u

o ax

We = V 1 cos _t + _[_(x) - 2]

uo : _z + V1 sin _t

U

U o

O0

em Dfm
Dn

m=o

(_,n,z)

where

The velocity

and is

w ago
--: _ cos _ _ (_,n)
_z Dn + te n Dgn-_n {_'_'_)

n=l

x Vl x

z' B=_' _=c'QZ

_z + V 1 sin _t 11/2z = _t, n = Y" 2vx
t

is determined from the integral of the continuity equation
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V = --

m=o n=l

en+l (I - n)g n

COS T(o )]}= go)+ _ en+1( q agn
- n=l -_n- gn

We can substitute these expressions into equations (A2) and (A3), equate

like powers of _, and derive the equations given below for fm and gn"

a2fo 2E(4o a2fo afo a2fo_3f° + fo = a¢ _2_
at')3 aT] 2 _aT] aT1 a_ a_ a---_/ -_ aX aX a_

(A4)

afo
fo = _ = 0 at n = 0

an

afo a¢

an ax
as n ÷"

a3g 0 a2g 0 2_(.a .fo a2g o af a2go _
at13 + fo o =an 2 \ an arl a_ a_ a-'-_/ 0 (AS)

ag o
go - = 0 at n = 0

an

ago
--+I as n+_
an

Equation (A4) is equivalent to the two-dimensional steady equation for the

airfoil section in question, and equation (AS) is equivalent to the linear

equation for the crossflow on an infinite swept wing with the same airfoil.

Hence both fo and go are functions of neither T nor z. The higher order

equations can be rendered independent of x and z by the following
substitutions:
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fl =
COS T

(i + _ sin T) 2 Fll(_'n)

I + p sin _ i + _ sin T G12(_'n)

f2 = i
(i ÷ _ sin _)2 F2o(_,n) ÷

sin

(I + p sin _)3
F21(g,n)

p2 COS 2 T

(i + p sin T) 4 F22(_'n)

Then

a3Fll + fo a2Fll 2 af° b_'ll + 5 a2f°
-- _ F 1

8D 3 8q 2 8q 8q 8q2 1

pro 82FI a2fo aFt1 8f o 82FII 82f o 3FII]
_ 2g_ I+

_Srl 8rl _ _rl _ _rl 8_ _2 8q2 _--_--J

afo a2fo 8_ a2f o ag oaf o
= 2 _ + n _- 2- + go + 2

an an 2 8x _ an an

(unsteady) (VUy) (WUz)

4 ag--°° - 2 a__ + 4
an ax

(Coriolis) (WeWex)

(A6)

8Fll
Fll - = 0 at

an
n=O

aFII

an
as
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83Gli

aq 3
_+ fo

82Gli

an 2
8f o 8Gli 2_C8f,__a2Gli2

an an \an an _
(A7)

i=O, i, 2

8Gli

G1i - an = 0 at n = 0

as q ->_

8G11 aGl2

an an
÷0 as n÷oo

where

8fo ta¢_2PO = 4---2
an \ax/

(Coriolis) (UeUez)

P1 =

(unsteady)

P2 =
a2go ( 8FII_ a2gon -- + go - 3F1 + 2g
an l a_ / _rl 2

%_.__,,_._J % _ .2

(unsteady) (VWy)

8 82g o
26 FII

_n an _

(uwx)
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83F2i

_r) 3
--+ fo

_2F2i _fo 8F2i
4

Bn2 _T] _

2fo

+ 5 -- F2i
_n2

_2fo _F2i _fo _2F2i

_n _E _n _ _n 2
(A8)

i = O, i, 2

F2i -
_F2i

_n
=0 at n= 0

where

_F2 i
---_0
3n

82f o 8fo 8GIo

Q0 = G_0 _-_-r+ 2 _n _n

(VUy) (WUz)

as r] .+oo

8GIo
- 2x.ll._q _

_n x

(Coriolis) (WeWex)

_Fll _2fo _fo _Gll _Gll
QI = -2 -- + GII -- + 2 4

_n _n 2 _n _n _n

(unsteady) (VUy) (wu z) (Coriolis)
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For the special case of a flat plate blade, all derivatives with respect
to _ vanish, and ¢ = x if the axis of rotation is located at the leading
edge. Therefore, equations (A4) to (AS) become ordinary differential equa-
tions in n. The solutions are plotted in figures 3 and 4 and are tabulated
in table l. Errors in F21 and F_2 reported in reference 10 have been
corrected.
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TABLE I. WALL DERIVATIVES OF FLAT PLATE

UNIVERSAL FUNCTIONS

f" (0) 0. 469599
o

II

Fly(O)a -1.2959

IT

Flu(O) a 1.2000

TT

F20 (0) i. 8090

II

F21 (0) -1.2257

IT

F22(0 ) -0.8132

F'_o(o) o

F_o(O ) -2.5414

TI

go (0) 0. 469599

TT

Gl0(0 ) 0.4711

G'll(O) -1.2383

G_I2 (0) -0.3935

G:_oCo) o
TT

G30(O ) -1.6975

asubscripts y

due to yawed

respectively.

and u denote solutions

wing and unsteady effects,
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DEVELOPMENT OF PROPELLER AND ROTOR FLOWS

FROM SIMPLER CASES

CLASSICAL YAWED PROPELLER OR ROTOR IN
AIRFOIL WING HOVERING ROTOR FORWARD FLIGHT

ROTATION ROTATION
2-DIMENSIONAL CROSSFLOW

SMALL CROSSFLOW CROSSFLOW
STEADY STEADY

STEADY UNSTEADY

Figure].

COORDINATES IN THE ROTATING SYSTEM
V 2

SMALLw CROSSFLOW

X

Figure2
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UNIVERSAL VELOCITY FUNCTIONS FOR PRIMARY FLOW

OVER A FLAT PLATE BLADE
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Figure 3

UNIVERSAL VELOCITY FUNCTIONS FOR CROSSFLOW

OVER A FLAT PLATE BLADE
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COMPARISON OF RESULTS FOR PRIMARY SHEAR STRESS

ON A STEADILY ROTATING FLAT PLATE BLADE

E
<

T
(/3

2
O3
(/)
klJ

Z
0

I
Z
ILl

E3

-- OUTSIDE- IN CALCULATION

z_ INSIDE-OUT CALCULATION _

oe PERTURBATION SOLUTION
WARSI

e o oJ

2 nd ORD;R

\4 th ORDER

I I I I I I

0 .2 .4 .6 .8 1.0 -_ 1.2
(TIP'_-r LE) _ = X/Z (HUB or TE)

Figure 5

CROSSFLOW VELOCITY PROFILES ON A ROTATING

FLAT PLATE

I
I n o PERTURBATION SOLUTIONS

5 - _-- NUMERICAL SOLUTIONS t

4-

[]

_ [] \\_-_.ooo_ /

0 1 L I J I I B-,_
-I.2 -I.0 -.8 -.6 -.4 -.2 0

CROSSFLOW VELOCITY, _

I

.2

Figure 6
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PRIMARY VELOCITY

5

4

_ _z
_7-Y_ 3

2

PROFILES ON A ROTATING FLAT PLATE

[] o PERTURBATION SOLUTIONS
(SECOND ORDER)

--NUMERICAL SOLUTIONS

0

0

_"_ I - I I I I I

0 .2 .4 .6 .8 I.O 1.2
U

PRIMARY VELOCITY COMPONENT, _

FigureI

COMPARISON OF RESULTS FOR SHEAR STRESS FOR A

2-D UNSTEADY FLAT PLATE

u e = 1+O.57 sin _,t
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ORDER
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Figure 8
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CROSS FLOW VELOCITY PROFILE ON A STEADILY ROTATING
NACA 0012 AIRFOIL
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5 -_" = 0.63

z
--= 1.0
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Figure 9

PRIMARY VELOCITY PROFILE ON A STEADI LY ROTATI N G
NACA 0012 AIRFOI L
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Figure 10
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DISTRIBUTION OF PRIMARY SHEAR ON A ROTATING

NACA 0012 AIRFOIL
12
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Figure it

EFFECT OF ROTATION UPON POSITION OF PRIMARY FLOW

SEPARATION FOR NACA 0012 AIRFOIL
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Figure 12
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EFFECT OF UNSTEADY VELOCITY UPON SEPARATION

NACA 0012 AIRFOIL
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CROSSFLOW VELOCITY PROFILES ON A FLAT PLATE
BLADE IN FORWARD FLIGHT
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CROSSFLOW VELOCITY PROFILES IN FORWARD FLIGHT
FOR A FLOW WITH ADVERSE PRESSURE GRADIENT
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Figure 15

INDIVIDUAL PRIMARY TERMS IN X-MOMENTUM EQUATION

FOR A FLAT PLATE IN FORWARD FLIGHT
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INDIVIDUAL SECONDARY MOMENTUM TERMS IN X-MOMENTUM

EQUATION FOR A FLAT PLATE IN FORWARD FLIGHT
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INDIVIDUAL CONTINUITY DERIVATIVES FOR A FLAT PLATE
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DISCUSSION

G. J. SISSINGH, Lockheed-California Company: My comments refer to the

application of the theory to rotors in forward flight. The crossflow angles

are zero for hovering and increase with speed or, more accurately, with the

advance ratio. Obviously, the largest crossflow angles occur when the blade

is in the fore or aft position. However, your Fig. 2 shows the maximum effect

in the retreating sector of the rotor disk. Will you please explain why this

is the case. Also, what is the criterion for the shaded area of Fig. 2?

McCROSKEY: The shaded region represents the regions where I would very

much suspect a small perturbation analysis. That is, there are important

regions near the tip where strong trailing vorticity is generated, which

introduces a strong crossflow as well as upwash. At this time it is diffi-

cult to explicitly say what it is or to say in what manner it actually would

affect the flow.

I think I know better now than I did when I first drew the slide up how

to treat it, but I still don't know what the effects are, and I don't know

anyone who knows how to predict the strong potential crossflow near the tip.

It is largest, probably, in the fourth quadrant.

The inner region, the little circle in the middle, corresponds to the

reverse flow region, where just because V1 is larger than the local value

of _z, the flow is coming at the blade from the trailing edge.

SISSINGH: Next, the crossflow, somehow, changes the lift and drag

coefficients of the blade elements. Are you able to predict the overall

effect of the crossflow on the rotor characteristics? I am especially

thinking of the effects on the blade dynamic response.

McCROSKEY: Well, I hope that in not too much longer I can bring a lot

of solid evidence to bear on the effects of crossflow on lift and drag. You

realize, of course, at this stage we are trying to be as basic as possible,

which has hardly ever been done before in this area, and build up on a solid

theoretical understanding.

Now, with regard to what it all means and how it all affects performance,

I would refer you to a very recent paper by Frank Harris, presented at the

Air Force V/STOL Planning and Technology meeting in Las Vegas in September,

in which he has used some empirical corrections to modify the aerodynamic

coefficients, such as CL, CD, and Cm, on the basis of first of all, a swept-

wing correction, which is just taken from static swept-wing wind-tunnel data,

and then secondly, an oscillating airfoil correction, which is taken from

2-D oscillating wind-tunnel tests. In an empirical manner he has shown how

to formulate these into performance calculations which are very much better

in agreement with actual test data than anyone has ever done in the past, and

this is extended into the regime where there is lots of blade stall. Now, he

has identified the source of the most important contributions. He has done

it empirically, and fairly well.
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GEORGE R. INGER, McDonnell Douglas Corp.: I want to congratulate you on

your presentation because it adds a note and a well-needed one at this confer-

ence, I think, that analytical studies are still very much necessary before we

trust computer program approaches too much, and I think your slide no. 6

brings this out dramatically. We cannot necessarily trust numerical solutions

as a wind-tunnel experiment. The Warsi numerical results, I think, would be

suspicious because of the apparently very large slopes that they imply.

McCROSKEY: Well, when he plotted them in the presentation in Atlanta,

they didn't show up that way because he used different scales. One has to be

very careful presenting and interpreting numerical results.

INGER: In any case, we ought to remember that we need analytical

solutions to check the computer programs out, and again, I think this was well

brought out by your paper.

ARTUR MAGER, Aerospace Corp.: One of the points which you raised was

the separation of the boundary layer caused by the rotation and I was wonder-

ing what type of separation criteria did you use? I mean, the separation

criteria do change in three-dimensional boundary layers.

McCROSKEY: Well, it would be easy to be flippant and say we called the

flow "separated" when we found the computer program going insane, but what it

really boils down to is the criterion of the chordwise velocity gradient

_u/_y vanishing. Now, this occurred in such a way that there was almost no

build-up of spanwise flow upstream of this. In any event, it is the point

where the implicit finite difference technique blows up.

I wish we could look more into the detail of what happens in those little

fluid elements right in the neighborhood of separation.

GEORGE R. BARTE, JR., General Electric Company: First, let me add my

compliments on a very excellent paper, and in particular for having added a

word to my vocabulary. "Microsonic" is beautiful. Some might prefer

"minisonic" but that is a little too topical.

In listening to and trying to understand the historical and evolutionary

manner in which your proceeded from, one of the things that struck me was your

comment that ships' propellers or water screws, because they have a relatively

low ratio of the x/c parameter, thus require more attention in attempting to

come up with some meaningful analysis or theoretical result that you could

apply to some real design.

It occurred to me that it needn't be a water screw. It could also be a

relatively large aspect ratio wing with ambient twist, and even variable

section. I particularly appreciate your comment on possible applications of

the thinking and creativity that went into what you have done to a problem

so far divorced in concern with low-power fields from the primary intent of

your paper.

HARRY A. DWYER, University of California, Davis: I did the numerical

part of the paper, and I want to comment on the comment about numerical

analysis.
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I think if you combine the numerical method with a little bit of analysis

you can save a lot of time. We can do a rotating NACA 0012 airfoil in less

than two minutes of 7044 computer time, so if you pick your coordinate system

right and use the analysis you can really save a lot of time.

ALFRED GESSOW, NASA Headquarters, Washington, D. C. : This delay of

separation is a very interesting thing to me because for many years of the

problem or anomaly of using two-dimensional airfoil data to calculate rotor

characteristics in the stall condition. For example, when calculating the

thrust of a rotor at high angles of attack where stall exists, two-dimensional

theory indicates that the thrust levels off as the angle of attack goes up,

and you predict a lot of stall. But here, by putting your analysis into the

performance equations you might show that the thrust continues to go up if

stall is delayed sufficiently.

McCROSKEY: Yes, that is exactly what I would expect, and I think some

measurements of pressure distributions on helicopter rotors done here at Ames

in the full-scale wind tunnel indicate this is, in fact, the case. One

develops higher lift coefficients than you should ever be able to expect to

get no matter what the angle of attack was in 2-D steady flow. That is, a

real airfoil should not develop that high a CL, and yet it does. There are

clear indications of this from some of the pressure measurements, as well as

the thrust going in excess of what one should expect on the basis of 2-D sec-

tion characteristics and strip theory. That is comforting because at least

the experimental evidence that we have, although quite meager, does not

contradict the trends and conclusions that we would draw from this

preliminary study.
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A CRITICAL EVALUATION OF ANALYTIC METHODS FOR

PREDICTING LAMINAR-BOUNDARY-LAYER

SHOCK-WAVE INTERACTION

By John D. Murphy

Ames Research Center

SUMMARY

pl

The present paper is a status report on the existing analytic capability

for the prediction of boundary-layer and flow-field characteristics in the

presence of a shock-wave--boundary-layer interaction.

Methods for analyzing such interactions have technological application
in determining inlet performance and control surface effectiveness at

supersonic and hypersonic speeds.

A discussion of three completely analytical methods for describing the

observed interaction phenomena is given, and results obtained with these

methods are compared with selected experimental data. It is shown that the

presently available theoretical methods are in essential agreement with each

other at all flow conditions considered and in agreement with experimental

data at low Mach numbers for weak shock waves but do not agree with experi-

mental observations for stronger shock waves at hypersonic velocities.

INTRODUCTION

The present paper reports on the status of existing analytic methods for

predicting laminar-boundary-layer parameters in the presence of an oblique
impinging shock wave.

The scope of this study is restricted to completely analytic methods in

which both the boundary-layer parameters and the pressure distribution are

computed, for the entire interaction, as part of the solution. As a result

of this restriction, only three basic methods were considered. The methods

differ only in their mathematical structure and are virtually identical in

their underlying physical assumptions. The three analytic methods considered

are the method of Lees and Reeves (ref. i) and its extension to nonadiabatic

flows by Klineherg (ref. 2), the method of Nielson, Lynes, and Goodwin

(refs. 3 and 4), and the method of Reyhner and Fl_gge-Lotz (ref, 5). The

methods are compared with each other and with carefully selected experimental
data.
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The experimental data that are compared with the theories cover a range
of Mach numbers from 2 to 9.7, wall cooling ratios (Tw/Taw) from 0.2 to 1.0,

and unit Reynolds numbers from 0.72×106 to 4.4x106 ft -I.

SYMBOLS

A

ae,a _

b

C

ci(x)

1 - M2

M 2

velocity profile parameter employed by Lees and Reeves and by

Klineberg

acoustic velocity evaluated at subscript conditions

pu _y _y pr2h _y _Y (Y - I)M_2 _ k_Y] J

enthalpy profile parameter employed by Klineberg

Chapman-Rubesin constant

parameter of the inverse shear profile employed by Nielsen et al.

Cf

D

f

H

h

M

Ni

Pr

p

Re

S

skin-friction coefficient

denominator of the right-hand side of moment equations of Lees and

Reeves or of Klineberg

dimensionless stream function

total enthalpy

static enthalpy or flow parameter employed by Lees and Reeves and

by Klineberg

Mach number

numerator of the right-hand side of the ith moment equation of

Lees and Reeves or of Klineberg

Prandtl number

pressure

Reynolds number based on subscript length

H
1

He
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T

u

V

X

Y

dS

B

Y

6

5"

rl

lJ

D

q_

aw

e

f

i

0

S

w

O0

absolute temperature

streamwise component of velocity

cross-stream component of velocity

streamwise space variable

cross-stream space variable

8u

3--_ on zero velocity streamline in separated region

Stewartson transformation coefficient

isentropic exponent

boundary-layer thickness

boundary-layer displacement thickness

transformed boundary-layer displacement thickness

transformed y variable

dynamic viscosity

density

flow turning angle across incident shock

Subscripts

evaluated at adiabatic wall conditions

evaluated at boundary-layer edge

evaluated downstream of interaction

evaluated at shock impingement point

evaluated at beginning of interaction

evaluated on zero velocity streamline

evaluated at wall

evaluated at undisturbed free-stream conditions
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DESCRIPTION OF THE ANALYTICAL METHODS

General

The analytic methods for predicting laminar boundary-layer--shock-wave

interactions will be described in two stages. First, the analytic model

together with the governing equations will be described, and second, the

mathematical procedures employed in each of the methods will be discussed.

Analytic Model and Governing Equations

The description of the analytic model and the governing equations is

relatively straightforward since all the methods considered employ essentially

the same model. The equations are those of the conservation of mass, momen-

tum, and energy to the boundary-layer approximation, plus an equation of

state and a so-called "free-interaction" relation which couples the local

viscous and inviscid flows. The equations can be written as

_(pu) + _(pv) _ o (l)
_x _y

_u 3u

0u _-_ + pv _y

3H 3H

pu-_£ + ov 3y + C3)

P = p(0, T) (4)

dp I=:-J or (5)= f e f(d6*_
dx _"e, kdx /

Each theoretical method discussed employs some form of the above

equations in the common procedure described below. Initial conditions are

prescribed at the assumed beginning of interaction, Xo, and the interaction is

initiated by one of the following procedures: The methods of Lees and Reeves,

Klineberg, and Nielsen et al.,employ a small positive pulse in surface

pressure which causes an outward displacement of the local boundary-layer-edge

streamline or the displacement thickness line; 1 in the method of Reyhner and

IA discussion of the sign of d6*/dp in laminar boundary layers is

presented in a later section of this report.
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Flffgge-Lotz the initial portion of the calculation is carried out in a weak

prescribed adverse distribution. This outward displacement in turn increases

the pressure through the free-interaction relation (eq. (5)), and the process

amplifies in the streamwise direction until the shock impingement point, xi,

is reached (see sketch (a)). At this point, the boundary-layer edge or

displacement thickness line is turned through an angle _:

Flow _ ]

Xo xi

5" or 5

Sketch (a)

The angle ¢ is chosen in the methods of Lees and Reeves and of Klineberg

such that an isentropic turn back to the free-stream direction will provide

the desired final pressure, and either x o or x i is employed as an iteration

parameter; whereas in the methods of Reyhner and Fl_gge-Lotz and of Nielsen

et al., the angle ¢ itself is employed as an iteration parameter. For the

value of ¢ chosen, the calculation procedure employed upstream of shock

impingement is resumed and carried on until some downstream conditions are

satisfied or until it becomes obvious that they cannot be satisfied. The

downstream compatibility condition in the methods of Reyhner and Flffgge-Lotz
and of Nielsen et al.,is dp/dx = dZp/dx 2 = O, while in the methods of Lees

and Reeves and of Klineberg, it is assumed that the solution must pass through

the Crocco-Lees point and approach the flat-plate solution far downstream.

An illustration of this iteration process is shown in the computed pressure

distributions of sketch (b). Depending on the direction of divergence of the

P

Po

I

too small

too large

7'
I
i

Xo xi

Sketch (b)
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solution, _ is either increased or decreased until the solution is bracketed.

At this point the increment of _ is successively halved until the desired

convergence criteria are satisfied. As a result of imposing the downstream

boundary condition on the system of parabolic equations, the physically

elliptic problem is solved as a two-point boundary-value problem rather than

the initial value problem of classical boundary-layer theory. The three

parameters of the solution are Xo, the beginning of interaction, xi, the

shock impingement point, and _, the flow turning angle or shock strength.

Once any two of these parameters is chosen, the third parameter is uniquely

specified.

Mathematical Procedures

As noted above, the physical models employed by the various analytic

methods are virtually indistinguishable. As a result, differences in the

predicted results of the several methods must be attributed to the differing

mathematical techniques employed in the solution of the governing equations.

These differences arise primarily from the manner in which the system of

partial differential equations (eqs. (1)-(5)) is reduced to a system of

equations amenable to computer solution.

Moment methods.- The methods employed by Lees and Reeves, Klineberg, and

Nielsen et al.,fit into the broad category of moment methods. In these

methods some functional or tabulated form is assumed to describe the y

dependence of the unknowns in terms of an x dependent parameter or param-

eters. This assumed form is then substituted into the partial differential

equations and the resulting equations are multiplied by some weighting func-

tion (e.g., u i, i = 0, n) and integrated with respect to y. The result is

a system of ordinary differential equations describing the variation of the

x dependent profile parameters. The accuracy of these methods then depends

on the choice of the approximating functions (i.e., the assumed profiles) and

on the weighting functions chosen (cf. ref. 6).

The method of Lees and Reeves employs the continuity, momentum, and

first moment of momentum equations for flow over adiabatic walls. The momen-

tum and first moment of momentum equations are obtained by choosing the

weighting functions 1 and u. The approximating function for the velocity

profiles is represented by the Falkner-Skan family of profiles, for attached

flow and by the Stewartson reverse-flow family of profiles (ref. 7) for

separated flow. The dependence of these profiles on the pressure gradient

parameter 8 is neglected in favor of a new parameter a defined as

a = n6f'_, attached flow

nf'= O
a = separated flow

n6
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where

f,, - _U/Ue I
W _ q=O

n is the cross-stream variable (transformed y) under the Stewartson trans-

formation and qf'=O is the value of this variable on the zero velocity

streamline between the forward and reverse flow.

When these assumptions and definitions are introduced into the

transformed continuity, momentum, and moment of momentum equations, they can

be integrated with respect to y to yield the system of ordinary differential
equations:

87 dMe -- M Nl(Me,a,h)1 8C

Me dx Re6* Me D(Me,a )
1

(6)

d67
i 8--C M_ N2(Me,a,h )

dx - Re_? M e D(Me,a ) (7)
i

8* da _ 8--C M N3(Me,a,h )

i d-x Re6, Me D(Me,a )
i

(83

where _ = aePe/a D , and here a is the acoustic velocity, C is the

Chapman-Rubesin constant, N i and D are complicated functions of the arguments
noted, and h is a parameter of both the viscous and inviscid flow. The

streamwise integration is carried out in an iterative fashion until the down-

stream compatibility relation is satisfied. The integration is conceptually

straightforward, but in its practical application is quite complicated.

Readers interested in the iteration procedure are referred to references 1
and 2.

The method of Klineberg (ref. 2) is an extension of the method of

reference 1 to the more general case of nonadiabatic flow with initial condi-

tions characteristic of flow in a region of weak interaction. An extension of

the method of Lees and Reeves to nonadiabatic flows was carried out by Holden

(ref. 8) but is not considered separately here since it is essentially con-

tained within the method of Klineberg. The velocity and enthalpy profiles
employed by Klineberg are those of Cohen and Reshotko (ref. 9). The addition

of the enthalpy profile as an unknown in the analysis requires an additional

equation (the energy equation) and a parameter b proportional to the
enthalpy gradient at the wall. The system of equations becomes:
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Me dx

8--C M= N 1 (Me,a,b,h)

Re6.. Me D(Me,a,b)
1

d6*
z B--C M N2(Me,a,b,h)

dx Re6.. Me D(Me,a,b )
1

(9)

(i0)

6* da _ -_C M_o N3(Me,a,b,h) (11)
z _ Re6. Me D(Me,a,b )

l

6* db 8-C M N4(Me,a,b,h)

Re6 * Me D(Me,a,b ) (12)
l

Again streamwise integration is conceptually straightforward. In the case of
flow over cooled walls, however, additional difficulties are encountered in

the streamwise integration. These difficulties are associated with the

behavior of so-called "supercritical" boundary layers. This concept and the

related concept of a critical temperature ratio as proposed by Nielsen et al.,

are discussed in a later section of this report.

Nielsen, Lynes, and Goodwin in their method employ a "Crocco like"

coordinate system and for attached flow approximate the shear profile as:

_u

_n

(i - u)/u + C4(x)

Cl(x) + C2(x)u + C3(x)u2

and the enthalpy profile as:

S : Sw(I - u) + EI(I - u)[ C¢_4(x ) - /u + C4(x)]

In the separated flow regime the above equations are employed above the zero

velocity streamline. Below this line the velocity is assumed to have the
form:

U = -_Sn -

and the enthalpy profile is taken as:

q

s : sw + (s s - sw) _s

Conditions are imposed so that the first and second derivatives of the veloc-

ity profile and the first derivative of the enthalpy profile are continuous

across the u = 0 line. The equations employed are the first four moments of

the momentum equation and the first moment of the total energy equation,

giving a system of five ordinary differential equations in the five unknowns

Ci(x), i = I, 4, and El(X). Streamwise integration is carried out by a
standard fourth-order Adams-Moulton routine.
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Finite difference method.- The method of Reyhner and FlHgge-Lotz is the

only method considered that applies a full finite difference technique to

equations (1)-(5). This procedure represents derivatives in the cross-stream

direction by a finite difference approximation and results in a system of

equations which can be solved as ordinary differential equations in the

streamwise direction. The y dependent problem is solved iteratively at

each x location and the streamwise integration is carried out by the Crank-

Nicolson method. This procedure provides an exact numerical solution to equa-

tions (1)-(5) in the attached flow region, and in the region of separated

flow, it provides an exact numerical solution to these equations under the

additional assumption that u(Su/Sx) = u(SH/Sx) = 0 below the zero velocity

streamline. This last assumption was made necessary by the appearance of

nondamping eigenvalues in this flow region which results in an inherently

unstable system of equations. The streamwise integration is subject to the

conditions described in the preceding section. Initial velocity and tempera-

ture profiles may be input in tabular form or, alternatively, provision is

made within the program to compute a flat plate initial profile. Wall temper-

ature and/or mass transfer distributions may be input as functions of the

streamwise variable. As a result, the Reyhner Flugge-Lotz method is the

most accurate and general of the methods considered here.

SUBCRITICAL AND SUPERCRITICAL BOUNDARY LAYERS

AND THE CRITICAL TEMPERATURE RATIO

As noted earlier, in the description of the analytic model employed in

all the methods considered here, it is required that the boundary layer

respond to an adverse pressure gradient by thickening. The resulting outward

displacement of the inviscid flow causes an increasing pressure through the

free-interaction relation (eq. (S)), and feeds back into the boundary-layer

equations such that the whole process is self-supporting in the downstream
direction.

In 1955, Crocco (ref. i0) described an extension of the Crocco-Lees

mixing theory to the problem of shock-wavewboundary-layer interaction. From

his analysis he deduced that the displacement of the boundary_layer edge under

a positive pressure gradient (d6/dx)/(dp/dx) = d6/dp can be either positive

or negative, depending on the details of the velocity and density profiles,

the magnitude of the edge velocity and the choice of the boundary_layer edge,

6. Boundary layers for which d6/dp was greater than zero were termed sub-

critical and boundary layers for which d6/dp was less than zero were termed

supercritical. The net result of this finding is that only subcritical

boundary layers are consistent with the free-interaction model employed by the
methods considered here.

In applying their method to flows over a cooled wall, Nielsen et al.,

(ref. 3) found that if the wall cooling ratio was reduced below some critical

value, no free interaction could be induced by a pressure pulse (i.e.,
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(d6*/dp) < O) or supercritical behavior. Fleeman (ref. ii) used this program

to map th_ locus of the critical temperature ratio as a function of Mach

numb er.

Lees and Reeves (ref. 1) provide an extensive discussion of the general

theory of the application of moment methods to the prediction of shock-wave--

boundary-layer interaction and discuss the criticality concept in detail.

Problems of supercritical-subcritical transition did not arise, however, in

their treatment of adiabatic flows. When Klineberg (ref. 2) attempted to

extend the Lees and Reeves procedure to flows with heat transfer, he found

that for cold walls, the initial profiles were supercritical. To circumvent

this difficulty, Klineberg introduced a discontinuous jump from the super-

critical to the subcritical state to permit free interaction when the

boundary layer is initially supercritical. Many other investigators have

carried out analyses of various degrees of approximation to determine when

supercritical behavior is to be expected. One of the most interesting and

complete of these analyses is by Weinbaum (ref. 12) who derived from the

boundary-layer equations an expression of the form:

p + B dy

dx

1Io V A dy

where B is a function of the velocity and temperature profiles and

1 M 2
A -

M 2

It is clear from this expression that when fo 6 A dy = 0, no finite value of

dp/dx is consistent with the boundary equations unless the numerator goes to

zero at the same rate. This is equivalent to the condition employed by

Klineberg that N i and D must simultaneously approach zero in order to pass

through the downstream critical or Crocco-Lees point.

The zeros of the integral £_ A dy are interpreted as the streamwise

locations where the boundary layer passes from supercritical to subcritical

or vice versa. Since the integrand (I - M2)/M 2 is a strong function of the

velocity and temperature profiles, it is not surprising that methods employing

different approximate representations of the velocity and temperature pro-

files, provide conflicting testimony regarding the criticality of a given
flow. In order to avoid the effects of the assumed velocity and temperature

profile forms, the method of Reyhner and Fl_gge-Lotz was employed in conjunc-

tion with the numerical integration of the Cohen and Reshotko Mach number

profiles to deduce the criticalS_y of perturbations on zero pressure gradient

flow_ for several Mach numbers < M < i0 and wall cooling ratios

0.03 < Tw/Taw _ 1.0. It was found that while initially zero pressure gradient
bounda--ry layers frequently exhibit supercritical characteristics for high
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cooling rates even at moderate Mach numbers, they can undergo a smooth

supercritical-subcritical transition as a result of a short streamwise expo-
sure to a mild adverse pressure gradient. This transition can occur because

the flow near the wall, having very little momentum, reacts rapidly to small

adverse pressure gradients and yields a large positive contribution to the

integral. The resulting condition is such that computing methods employing

a small pulse in surface pressure to induce the interaction will not generate

adverse pressure gradients unless specific allowance is provided for a

supercritical-subcritical jump. The method of Reyhner and Fl6gge-Lotz, which

induces the interaction by prescribing some initial region of small adverse

pressure gradient, effectively bypasses the problem. With regard to the

other analytic methods considered, only the method of Nielsen et al., is

limited to initially subcritical flows. In the present application, however,

this does not constitute a serious shortcoming since the condition occurs

only for Tw/Taw < 0.2 at M = i0, and at even lower wall temperature ratios

for Mach numbers Tess than i0.

COMPUTER PROGRAMS

Each theoretical method discussed in the present study is embodied in a

computer program. In each case the program employed in the comparisons was

provided by the respective authors. However, certain modifications were

required to make the program compatible with the NASA-Ames DCS 7040_7094

computer. These modifications were made with reasonable care to prevent any

loss of accuracy; however, the program for the method of Reyhner and Flffgge-

Lotz was written for the CDC 6600 employing 15 significant figures, and the

7040-7094 employs only 9 significant figures. Since double precision was not

used in the program conversion, for some conditions the convergence criteria

employed in this program had to be relaxed somewhat.

In terms of the generality of the programs, the method of Reyhner and

Fl_gge-Lotz is clearly superior to the others because of the transport prop-

erty options (see table I) and the capability of employing tabulated initial

profiles as well as nonisothermal walls with or without mass transfer. The

transport properties employed by the remaining methods are Pr = 1 and the

Chapman-Rubesin viscosity law. The boundary conditions imposed at the wall

are u w = vw = 0 and Tw/Taw = const. Initial conditions employed by these

methods are either flat-plate similarity profiles, employed by Nielsen et al.,

and by Lees and Reeves or the hypersonic strong- or weak-interaction solutions

employed by Klineberg.

In terms of user convenience, the method of Nielsen et al. is superior

to the other methods considered. Only three input cards are required, and

all setup and iteration procedures are carried out internally. Of the four

methods comsidered, Klineberg's is the most difficult to use for two reasons:

First the program was written as a research program and as such was never

intended for "batch" calculations. The second reason is directly associated

with the underlying theory. Since the approximating functions for velocity

and enthalpy are tabulated functions of a and b the functions appearing on

the right-hand side of equations (9) through (12) n_/st be generated
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externally and curve fitted. A separate subroutine must be written

employing these curve fits for each value of wall cooling ratio, Tw/Taw,

considered. At the present time these subroutines are available only for

Tw/Taw = 0.2.

EXPERIMENTAL DATA

In choosing the experimental data for comparison with the analytic

methods the following criteria were employed:

I. In addition to presenting the pressure distribution throughout the

interaction region, the data source should provide supplementary information,

such as schlieren photographs, skin-friction distributions, or heat-transfer
distributions.

2. The flow should be two-dimensional and laminar throughout the

interaction. These criteria are necessarily qualitative in most cases. When

experimental data did not provide downstream profiles or skin-friction dis-

tributions, the flow was considered laminar if a well-defined edge white line

on the schlieren photograph could be traced throughout the interaction. A

flow was considered to be two-dimensional if the predicted downstream mass

flow profiles matched those obtained experimentally or, lacking measured

downstream profiles, if the aspect ratio (i.e., model width divided by

distance from the leading edge to shock impingement) was of the order of

unity or greater (cf. ref. 13).

COMPARISON OF EXPERIMENTAL AND ANALYTIC RESULTS

General

Before the results of the analytic methods are compared with experimental

data, a few words are necessary to describe the manner in which the compari-

sons were made. As noted earlier, specifying any two of the three parameters

Xo, xi, and _ or the shock strength is sufficient to provide a unique solu-

tion to the analytic problem. Unfortunately, none of these parameters can be

determined very precisely even when experimental data are available, so that

a certain lack of uniqueness exists in the application of these analytic

methods to the prediction of experimental data. In the present study each

analytic method was employed in an iterative fashion to obtain a reasonably

good match to the pressure distribution over the entire interaction regime.

For flow at high Mach numbers (i.e., M _ 7.4) it was found that this proce-

dure could not be followed except for very weak impinging shock waves. When

the entire pressure distribution could not be matched it was decided to match

the pressure distribution upstream of shock impingement (i.e., xO _ x _ xi).

When this procedure was followed, the final pressure ratio was generally

underpredicted.
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Comparison With the Data of Hakkinen et al.

Figures l(a) through l(c) show comparisons of the three analytic methods

with the data of Hakkinen et al. (ref. 14). An experimental measure of skin

friction was obtained for these data employing the pitot probe as a Preston

tube. It can be seen from these figures that the predicted pressure distribu-

tions are indistinguishable from each other and agree well with the experi-

mental data. The predicted skin-friction distributions also agree closely

with each other but only qualitatively with the data. It can be seen in each

of the three sets of data for this series (figs. l(a) through l(c)), that the

analytic methods have a common tendency to overpredict the extent of

separation relative to that observed experimentally.

Comparison With the Data of Lewis

In figures 2(a) and 2(b) the three analytic methods are compared with the

data of Lewis (ref. 13). For these experiments, only surface pressure

distributions were reported in reference 13. In figure 2, predicted skin

friction is plotted for intercomparison among the theories even though experi-

mental results are lacking. In figure 2(a) excellent agreement is found for

surface pressures both among the theories and between theory and data. Some

difficulty was experienced with the 7094 (single precision) version of the

Reyhner and Flffgge-Lotz program. In particular, convergence difficulties

were encountered immediately downstream of shock impingement. The results

shown for this program were obtain by Dr. Reyhner on the Boeing CDC 6600

using, what would be on the 7094, double precision calculations.

Figure 2(b) provides the first and only comparison, in the present study,

of the method of Klineberg with other methods and with data primarily because

of the wall cooling ratio limitations implicit in Klineberg's method. Of

particular interest in this figure is the discontinuity in both predicted

surface pressure and skin friction in Klineberg's method which is brought

about by the supercritical-subcritical jump mentioned earlier. The cause of

the discrepancy in surface pressure distributions among the several theories

in this case is difficult to pinpoint since slightly different values of xo

and xi were employed in each method in addition to the different profile

descriptions, etc., described earlier. In any case, none of the theoretical

methods departs from the data by more than 20 percent, which may be considered

acceptable for many applications.

Comparison With the Data of Needham

In figures 3(a) through 3(c) the methods of Reyhner and Fl_gge-Lotz and

of Nielsen et al., are compared with the data of Needham (ref. 15). The Mach

number for these tests was 7.4. The only variable parameter in this series of

data is the shock strength. At high Mach numbers discrepancies between

theories and the data begin to appear, even for relatively weak shocks. In

figure 3(a), for example, the predicted pressure distributions display a well-

defined kink, or plateau, while no such behavior is noted in the data. This
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is consistent with the previously noted tendency to overpredict the extent of

separation. A comparison of the measured and predicted heat transfer, how-

ever, indicates a more serious shortcoming in the analytic methods. Down-

stream of the shock-impingement point very large errors in predicted heat

transfer are apparent. In figures 3(b) and 3(c), for increasing shock

strength, the errors in predicted heat transfer become even larger. Further-

more, it is found that one can no longer match the final downstream pressure

level if the pressure distribution upstream of shock impingement is to be
matched.

Figures 4(a) and 4(b) show comparisons of the method of Nielsen et al.,

and Reyhner and Fl_gge-Lotz with additional data of Needham obtained at a

Mach number of 9.7. The difference between these two sets of data is shock

strength. Intercomparisons between the theories and comparison of theory

with data are qualitatively the same as those discussed for figures 3(a)

through 3(c). Again, for a weak shock, the pressure distribution throughout

the interaction is reasonably well predicted, and the heat-transfer distribu-

tion is rather poorly predicted downstream of shock impingement. At somewhat

higher shock strengths imposing xo and xi inferred from the data results in

a substantial underprediction of the final pressure ratio.

CONCLUDING REMARKS

When all of the foregoing comparisons of theory and data are considered,

the following general observations can be made. First, all of the theoretical

predictions agree surprisingly well with each other considering the differ-

ences in the mathematical procedures employed. Second, for very weak shock

waves, all the methods provide an adequate representation of the observed

pressure distribution but have a uniform tendency to overpredict the extent

of separation and underpredict heat-transfer rates. Third, for strong shocks

when Xo, the beginning of interaction, and xi, the shock impingement point,

are determined from the data, all of the methods substantially underpredict

the final pressure ratio. It is worth remarking that the second and third

observations represent different manifestations of the same fundamental

behavior of the analytic methods. In order to demonstrate this behavior,

another comparison of the method of Nielsen et al., was made with the experi-

mental data of figure l(c). This method was employed because of the effici-

ency of the program and the demonstrated similarity of the results. In this

case, however, the procedure used was to match the experimentally determined

separation point. The results are presented in figure 5. It can be seen in

this comparison that the predicted pressure distribution is poorer than that

obtained for the same data in figure l(c) and, as before, an underprediction

of the final pressure rise results from this matching procedure.

Whether the discrepancy cited above results from a lack of two

dimensionality in the experimental flows or from some basic shortcoming in

the underlying physical model cannot be unequivocally determined from the

present study. While reasonably convincing arguments can be marshalled in

favor of either of the above possibilities, it is the author's opinion that
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the inability of the methods to predict the experimental results is not

wholly associated with shortcomings in the experimental data. As mentioned

earlier, care was exercised to insure that all data considered was obtained

in pure laminar interactions and on models of relatively large aspect ratio.

(The aspect ratio employed here is the model span divided by the distance from

the leading edge to the shock impingement point, i.e., span/xi. ) For the data

of Needham at Mach number 9.7, the aspect ratio was 0.83 while for the data

of Hakkinen et al., at Mach number 2, it was approximately 4. While, in the

absence of side plates, a large but finite aspect ratio does not guarantee

two-dimensionality, it is felt that the uniformity of the behavior of the

experimental results over a wide range of parameters militates against random

discrepancies in the data.

In order to determine how the existing physical model should be modified

to provide a better quantitative description of the details of the flow, it is

useful to reconsider the validity of the underlying assumptions. The first

assumption is that the boundary-layer equations are valid. Implicit in this

assumption is the condition _p/Sy = O. This condition together with the

second assumption that the viscous and inviscid flows interact only along

some line at or near the boundary-layer edge imposes the physically unrealis-

tic condition that the supersonic inviscid flow cannot respond to perturba-

tions in the boundary layer except insofar as these perturbations affect the

inclination of the local edge streamline or the displacement thickness line.

Only by carrying out an analysis wherein these assumptions have not been made

can the validity of these assumptions be tested. Some efforts in this direc-

tion have been made by Rose (ref. 16). The third and last assumption is that

the so-called downstream compatibility conditions are meaningful and correct.

Since the location of a downstream critical point is related to the specific

assumptions made for velocity and enthalpy profiles and to the choice of the

line along which the viscous and inviscid flows are coupled, the condition

that the solution pass smoothly through this point, as in the methods of Lees

and Reeves and of Klineberg, while consistent with the boundary-layer approxi-

mation, seems somewhat artificial physically. The alternate condition

employed by Reyhner and Fl_gge-Lotz and by Nielsen et al., is unfortunately

equally artificial in that the simultaneous satisfaction of the conditions

dp/dx = d2p/dx 2 = 0 is inconsistent with the free interaction model, and it

is this inconsistency which prevents continued downstream integration in

these latter methods. It is clear that some downstream boundary condition is

required to provide a relation between upstream influence and shock strength

if nonelliptic equations are to be employed, but as to which, if either, of

the above downstream conditions is valid, remains to be demonstrated.
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DISCUSSION

JAMES J. DER, General Dynamics, Pomona Division: You show the skin

friction being zero in the reverse flow region. Is that right?

MURPHY: Since I did not have any experimental data showing negative skin

friction, the output of the computer program was simply not plotted in the

separated region. It does go negative in these regions, but since the present

paper was an attempt to compare with experimental data, there didn't seem to

be much point in plotting the theories alone.

JACK N. NIELSEN, Nielsen Engineering and Research, Inc.: I am very

happy to see some party finally take these theories and compare them so as to

show what the state of the art is at present.

I would like to suggest why the theories do not agree with the data at

hypersonic speeds. I think the data for which the theories did not apply were

ones for x greater than I, so they have displacement-dominated pressure

gradients near the leading edge, and highly favorable gradients which give

initial conditions which are not Blasius initial conditions.

Now, I think probably you used Blasius velocity initial conditions in the

theory for those two cases.

MURPHY: That is correct.

NIELSEN: Now, we have made some studies to determine the sensitivity of

the extent of separation to slight changes in the initial profile, trying to

calculate it for these favorable pressure gradients. We found that the

extent of separation is sensitive, that small changes in the actual velocity

profile can have a significant effect on this extent of separation. Now,

this may be also associated with normal gradients. I can't say it isn't.

But I know that the leading-edge effects can change the initial conditions

enough to have a significant effect on the extent of separation,

MURPHY: Well, this is certainly quite possible. We haven't looked

into perturbing the initial conditions at this point, but one can infer from

the written version that initial profiles tending toward criticality will

impose large effects on the solution.

MICHAEL S. HOLDEN, Cornell Aeronautical Laboratory, Inc.: I know the

data of Needham; there is a weak interaction up to the beginning of separation.

The free-stream Mach number is i0 and the Mach number at the beginning of

interaction is 9.7, so I don't believe that the profiles in the boundary

layer differ significantly from the Blasius profiles.

How do you determine the beginning of the interaction, Xo? Do you define

this in terms of either pressure or heat transfer?

MURPHY: Well, the procedure that was followed was essentially a data

matching procedure. We simply proceeded to guess xo and x i until the data
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went through the pressure data. In a data matching procedure you can do this.

As a design tool, one would have to, say, obtain the shock strength and the

impingement point from some of the inviscid calculations, and then iterate on

xo to find an appropriate downstream pressure level.

HOLDEN: So you didn't match xi minus Xo, you matched the plateau

pressure.

MURPHY: Yes, we matched the pressure distribution, in effect, from

xo to xi.

HOLDEN: Not explicitly x i - xo.

MURPHY: Not explicitly, no.

JAMES S. KEITH, General Electric Company: Would you care to comment

about the relative computer times between the methods?

MURPHY: That's a little unfair. I don't mean the question, I mean my

commenting on it. It depends to a great extent on how familiar you are with

the programs and on the particular way in which the programs were designed.

We had the programs furnished to us by the several authors. The method

of Klineberg was certainly the slowest, and it was difficult to use. How-

ever, it was a program that was not designed for batch calculations, so this
has to be borne in mind.

The program of Rehner and Flugge-Lotz took about I0 minutes for, say,

three iterations, and Nielsen's program would take on the order of 3 minutes.

However, if one were to make some judgment as to which program to use in a

given application he would have to examine your particular problem, look at

the constraints that are imposed by the theory, and then make judgment on the

basis of either efficiency, generality, or peripheral considerations rather

than accuracy alone. Clearly for flow on a flat plate with impermeable,
isothermal walls, Nielsen's method is the fastest.
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A METHOD FOR ANALYZING THE INTERACTION .OF A_ .....

OBLIQUE SHOCK WAVE AND A BOUNDARY LAYER

By William C. Rose

Ames Research Center

A method is presentod for predicting the characteristics of an interac=

tion between an externally generated, oblique shock wave that impinges on

either laminar or turbulent boundary layers, The basis of the method is the

assumption that the boundary layer in the interaction region may be divided

into two layers: the outer layer, an essentially inviscid but rotational

layer, and the inner layer, an essentially viscous layer. Coupling of the

inner and outer flows throughout the interaction region is discussed. The

only empirical information required for using the method is the extent of

upsteam propagation of the pressure rise. Correlations for the length of

upstream influence, based on parameters consistent with the two-layer hypo-

thesis, are presented in the appendix. Results predicted by the method are

compared with experimental results in terms of surface pressure distributions,

heat transfer, and flow-field configuration (i.e., shock-wave structure and

regions of compression and expansion).

INTRODUCTION

For aircraft intended to fly at supersonic and hypersonic Mach numbers,

interactions between oblique shock waves and boundary layers must be properly

accounted for to predict adequately the external aerodynamic performance as

well as the internal aerodynamics of engine inlets. Assessing aerodynamic

performance requires knowledge of the details of the interaction of a shock

wave and a boundary layer, such as the manner in which the boundary layer

develops throughout an interaction, and how the flow external to the boundary

layer is modified as a result of the interaction. For the boundary layer

itself, it is important to know whether or not it will separate when subjected

to the shock-induced pressure rise. Modifications of the external flow field

include regions of compression and expansion induced by the interaction.

These modifications are of paramount importance in internal flows, since the

characteristics of the reflected compression and expansion regions originat-

ing at an interaction on one wall of a hypersonic inlet must be known to

obtain the character of the flow field that interacts with the boundary layer

on the opposite wall.

A method for analyzing the flow resulting from an oblique shock wave

impinging on a turbulent boundary layer was presented in reference I. This

method was based on Lighthill's assumption (ref. 2) that a portion of a super-

sonic boundary layer on the interaction region could be treated as a
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rotational but inviscid flow. This portion of the boundary-layer flow was
solved in reference 1 by a method-of-characteristics computing program. The

effects of viscosity were assumed to be confined to a thin layer near the wall
and, therefore, were neglected in the analysis. Neglecting them, however, led

to some rather serious shortcomings such as the inability to predict surface
quantities such as skin friction and heat transfer. In spite of these short-

comings, fairly good agreement with surface pressure data and the location of

incident and reflected shock waves was obtained for shock strengths below that

which produced extensive separated regions. The analysis of reference 1

treated the interaction essentially as an inviscid problem, whereas other

analytical methods use the boundary-layer equations. For example, the methods
of references 3, 4, 5, and 6 describe the behavior of a laminar boundary layer

in an interaction. However, a critical evaluation (ref. 7) indicated defi-

ciencies in all four methods for interactions having large pressure rises.
For turbulent boundary-layer interactions, no reliable modeling of the turbu-

lent transport processes in an interaction region has been developed. Conse-
quently, methods for treating these interactions are based on "control volume"

models (e.g., refs. 8 and 9) or on semiempirical techniques, such as that of

reference i0, rather than on analytical solutions of the governing differen-

tial equations. All of these methods treat the interaction as a boundary-

layer problem, neglecting the external flow, per se, and consequently, yield

little or none of the external flow-field information required for analyzing
internal flows.

The purpose of this paper is to extend the analysis of reference i to

include the effects of viscosity. The extension is accomplished by employing

the two-layer approach of reference i, and by assuming that the viscous layer

is a laminar boundary layer coupled to the outer inviscid layer. The method

by which the viscous and inviscid flows are coupled is discussed. The only

empirical information required to complete the analysis of the interaction is

a correlation for the extent of the upstream influence of the interacting

shock wave. The correlation is discussed in the appendix.

The proposed method of analysis yields a self-consistent two-layer model

of the interaction that provides boundary-layer profiles, skin friction, heat

transfer, and surface pressure distributions throughout the interaction. The
method also provides means for calculating the strength and location of the

reflected expansion and compression regions. Results obtained by the pro-

posed method are compared with experimental data for shock-wave--boundary-

layer interactions for both laminar and turbulent entering boundary layels.

SYMBOLS

Cf

M

Mo

P

542

skin-friction coefficient

Mach number

Mach number at boundary-layer edge at onset of pressure rise

local pressure



q

R

Re

T

u

X

Y

Yviscous

a L

6

final

i

0

P

t

heat-transfer rate

radius of leading edge

Reynolds number

temperature

velocity

distance along surface from leading edge

distance normal to surface

distance defined in figure 2

local flow turning angle across incident shock wave

boundary-layer thickness

boundary-layer displacement thickness, 6 _ -_d y
0 _u j

Subscripts

downstream of interaction

station where incident shock intersects viscous layer {see

figs. 12 and 13)

conditions at onset of pressure rise

plateau

total

boundary- layer edge

DISCUSSION OF ANALYTICAL METHOD

Background

Subsequent to the publication of reference 1) the method presented
therein has been applied to additional interactions of oblique shock waves
with turbulent boundary layers, Examination of these analytical results
indicated that further investigation of the fundamental concept of the two-

layer model of the boundary layer in the interaction region was warranted.
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Two important results obtained from the method of reference 1, but not

discussed therein, can be described by the use of figure 1. The first, which
is associated with the interaction of the incident shock wave and the vorti-

cal (or rotational) layer, is that as the incident shock passes through the

vortical layer, a large expansion region is formed that propagates into the

downstream flow. The expansion region has been observed in schlieren photo-

graphs and is evident in the photographs presented in figures 5, 17, and 18

of reference 11. This expansion region is quite evident in high Mach number,

turbulent boundary-layer interactions. On the basis of analytical solutions

of the flow obtained during the present study, it can be stated that the mag-

nitude of the expansion decreases as both the Mach number and the shock

strength decrease. This expansion is important as it affects the resulting

external flow and the configuration of the reflected shock wave passing into

the expansion region. Methods for analyzing a turbulent, boundary-layer--
shock-wave interaction, other than reference 1, do not account for the

presence of the expansion region.

The second result is that downstream of the interaction a region of

vorticity exists external to the streamline that contains all the vortical

flow ahead of the interaction. This region can be seen in the downstream

Mach number and total temperature profiles in figure i. The height to the

outer limit of the predicted vortical layer is identified by the term

"induced 6." This terminology has been selected to indicate that some of

the vorticity downstream of the reflected shock wave is induced by inviscid

effects alone. The "no mass addition 6" shown in figure 1 is the height

where the streamline containing all the vorticity ahead of the interaction

emerges from the reflected shock wave. The difference between these two

heights represents the thickness of the induced vortical layer. It is evi-

dent in the solution presented in figure i that there would be an apparent

increase in the mass flow contained in the total vortical layer downstream of

the reflected shock (i.e., below the height indicated by "induced 6"). An

increase of 200 to 300 percent over that in the entering boundary,layer mass

flow is inferred. The predicted Mach number profile is in general agreement

with the experimental profile data obtained slightly downstream of the pre-

dicted profile. The data were obtained in the study of reference ii. The

experimental total-temperature profile at the same station is also shown and

indicates that the outer edge of the region of temperature gradient is at

about the same height as that indicated by the "no mass addition 6." This

behavior of the experimental data supports the prediction of an inviscidly

induced region of vorticity, since no total-temperature gradient exists above

the no mass addition _ in the region of flow where a large Mach number (or

total pressure) gradient exists. It should be emphasized that the additional

vorticity was predicted solely from inviscid effects, neglecting any viscous

mixing phenomenon.

In view of the above, it is evident that analytical methods based only

on the usual boundary-layer equations have no means of accounting for the

existence of induced vorticity in interactions. Furthermore, analyses based

on control volume models (e.g., refs. 8 and 9) specifically exclude the pos-

sibility of mass addition in the region of pressure rise. The pressure dis-

tribution predicted by the method of reference 1 is shown in figure 1 for
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comparison with the experimental pressure distribution; the pressure data are

shown to be the same scale and properly alined with the flow-field sketch.

It is apparent that the mass addition produced by the induced vorticity occurs

within the region of the pressure rise. Therefore, it is apparent that

excluding mass addition in that region is inconsistent with experimental

observation and is consequently a shortcoming of control volume methods. Fur-

ther examination of figure 1 shows a discrepancy in the predicted and experi-

mental pressure distributions in the vicinity of the shock impingement point.

Since, as noted previously, viscous effects were neglected, skin-friction and
heat-transfer results were not obtained from the method.

It is thus apparent that the method of reference 1 can be used to predict

many of the observable interaction features, but that it yields no information

regarding viscous effects, such as skin friction and heat transfer. Further-

more, it yields no information as to the character of the expansion and com-

pression regions that arise from the mutual interaction of the viscous and

inviscid portions of the boundary-layer flow and that have been observed in

schlieren pictures.

The Coupled, Two-Layer Model

An extension of the method of reference 1 was undertaken to correct the

shortcomings noted in the preceding section. The interaction model proposed

in the present study is shown schematically in figure 2. Although the enter-

ing Mach number profile, shown at the upper left of the figure, is typical of

that for a turbulent boundary layer, the model described below is the same

whether the boundary layer is turbulent or laminar. The present model differs

from that considered in reference 1 in some features, but retains the basic

hypothesis that the boundary layer in the interaction region may be divided

into two distinct regions. The outer layer is considered to be an inviscid,

rotational, isoenergetic region in which normal (i.e., transverse) pressure

gradients may exist and in which any effects of viscosity and turbulent mixing

are neglected. The inner layer is considered to be a laminar, viscous layer.

It is also assumed that the entering Mach number profile may be used to

determine the relative extent of the outer, or inviscid, layer, and the inner,

or viscous, layer (i.e., the height Yviscous indicated in fig. 2).

The primary difference between the presently proposed model and that of

reference i is that in reference 1 it was assumed that once .y . had
_viscous

been chosen, the inner layer could be neglected; the effect or the inner layer

on the outer layer, and, conversely, that of the outer layer on the inner

layer, was ignored. The significant feature of the present method is that it

contains a procedure by which the interplay between the viscous and inviscid

flows throughout the interaction may be included.

In order to proceed with the analysis, the division between the inner

and outer flows must be made. Before the present procedure is described,

that employed in reference 1 will be reviewed. In that study, the height to

the line dividing the inner and outer flows, Yviscous, was chosen as that

where a "break" or sudden change occurred in the slope of the entering Mach
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number profile. This height was also subject to the condition that it be

sufficiently large that the flow in the outer layer would remain supersonic

downstream of the reflected shock wave. This latter condition was invoked so

that a method-of-characteristics computing program could be used to obtain

solutions in the outer layer.

This technique is quite subjective and lacks any quantitative procedure

for determining the height Yviscous. Therefore, in the present study, a pro-

cedure for determining Yviscous has been developed that is consistent with

the two-layer hypothesis; that is, the portion of the entering boundary-layer

flow above Yviscous is assumed to be inviscid. Therefore, the portion of

the entering profile that will not significantly deform in the absence of

viscous effects as the solution moves downstream is sought. The procedure can

be illustrated by the use of figure 3. A typical turbulent boundary-layer

profile entering an interaction region is shown by the solid line. Three

profiles, each obtained after computation over a distance of five boundary-

layer thicknesses downstream of the entering profile, are shown by the dashed

curves. Each profile represents a different choice of Yviscous' It is clear

that the choice of 0.031 inch is too low since the profile deforms excessively

from the entering profile. This behavior is characteristic of a }'viscous

low enough to encompass a portion of the profile that maintains its shape

primarily through the effects of viscosity. A Yviscous of 0.040 inch is

slightly better than 0.031 inch but still is considered unacceptable for pres-

ent purposes. On the other hand, Yviscous = 0.062 inch is considered accep-

table because the profile has not deformed significantly from the entering

profile. As in reference i, Yviscous must still be chosen so that the flow

downstream of the reflected shock remains supersonic. For the data examined

in this study, the value of Yviscous, determined as outlined above, was suf-

ficiently large that no problem with subsonic flow downstream was encountered

for turbulent boundary-layer flows with an edge Mach number as low as 3.0.

This, of course, depends on the shock strength, but for reasonable shock

strengths (e.g., those not excessively above that required for incipient sepa-

ration) no problem would be anticipated. The procedure described above for

determining Yviscous is much more quantitative than that proposed in

reference 1 and has the esthetically pleasing feature of providing a division

between the inner and outer layers, consistent with the two-layer concept.

For the turbulent flows studied herein, the value of Yviscous chosen as

above corresponded to values of the law-of-the-wall parameter, y+, ranging

from 20 to 100 (based on a reference temperature). These values are consis-

tent with those obtained for the edge of the laminar sublayer in a law-of-the

wall analysis. Therefore, the assumption discussed below, that the inner

layer of the present method is laminar, is not inconsistent with experimental

observations of the thickness of the laminar sublayer.

The above discussion was concerned with a turbulent entering boundary

layer. An identical procedure may be applied for an entering laminar

boundary-layer profile. A typical turbulent profile with its appropriately

chosen )'viscous and a typical laminar profile with its Yviscous are com-

pared in figure 4. The profiles are shown as y/_ versus Mach number to

indicate the relative portion of the boundary layer (independent of its

absolute thickness) that may be considered essentially inviscid. _t can be
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seen that the percentage of the turbulent boundary-layer thickness in which
viscous effects are neglected is much larger than that of the laminar layer.
Note that, even though the inviscid portion of the laminar layer is small,
the two-layer analysis maybe applied.

Subsequent to determining Yviscous, the combined inviscid and viscous

entering profile to be used in the computation of the combined flows must be

determined. For a laminar boundary layer this is quite simple. The viscous

portion is just the portion of the entering boundary below Yviscous, and
the outer inviscid layer is taken to be the remainder of the profile above

Yviscous plus a portion of the flow external to the boundary layer. The

combined entering profile for a typical laminar boundary layer is shown in

figure 5(a). Both the Mach number and total-temperature profiles are con-

sidered. The Mach number profile is matched identically, while the assumed

total-temperature profile has a slight discontinuity at Yviscous because of

the assumed isoenergetic outer layer.

The case of a turbulent entering profile is slightly more involved. For

purposes of the present study, it is assumed that the entire viscous mixing

phenomenon important in the interaction region can be represented by a

laminar, viscous layer. This assumption leads to the following technique for

obtaining the assumed entering profile. The entering profiles, obtained in

the experimental investigation of reference ii, are shown in figure 5(b) to

illustrate the procedure. The largest portion of the turbulent entering

profile is above Yviscous; therefore, the Mach number profile is matched

exactly. The viscous layer is assumed to be a zero-axial-pressure-gradient,

laminar boundary layer with the same value of Yviscous as the entering tur-

bulent profile, and at Yviscous the value of the local Mach number is set

equal to that of the turbulent profiles as indicated in figure 5(b). The

assumed Math number profile differs slightly from the experimental entering

profile. Therefore, below Yviscous, the gradients in the two profiles are

generally not matched. This matching procedure yields the assumed total tem-

perature profile shown in figure 5(b). The slight deviation of the assumed

Mach number profile in the viscous layer from the experimental profile is

probably within the experimental accuracy of determining profiles near the

wall. The assumed total-temperature profile, however, is considerably in

error. No means of estimating the errors introduced by this seemingly large

discrepancy were investigated in this study other than those specifically

discussed in the Results section.

For further discussion, it is convenient to divide the interaction into

upstream and downstream portions. The division is made at station xi in

figure 2, the point where the incident shock wave impinges on the outer edge

of the viscous layer. The manner of selecting the outer edge of the viscous

layer is discussed next; a more detailed description of determining xi is

given in the appendix.

It is assumed that upstream of xi, the viscous layer, constituted as

described above, may be solved by any of the analytic computing programs

described in references 3, 4, S, or 6. These methods, in essence, require

the specification of the length, lo, which is the distance from the onset of
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the pressure rise) xo, to the station x i (fig. 2), in order to initiate the

interaction at the proper location. The extent of upstream influence, I O'

can be obtained from experimental data by the procedure outlined in the

appendix. For the comparisons between experiment and analytical results pre-

sented herein, the extent of upstream influence employed in the viscous solu-

tion was determined from the specific data under consideration. These data,

together with additional data covering a wide range of Mach numbers, Reynolds

numbers, and shock strengths were used to formulate correlations for the

extent of upstream influence presented in the appendix. The correlations,

which are presented for both laminar and turbulent entering boundary layers,

may be used to predict the length, lo.

After the length of upstream influence is determined, a solution of the

viscous, inner layer is obtained from which the lower boundary of the outer

layer is then taken. Many possible boundaries can be taken from the inner

solution; three are the displacement thickness line, the boundary_layer edge

line, and some appropriately chosen streamline. The latter was chosen for the

present study since the method-of-characteristics computing program employed

has a streamline as its lower boundary. Therefore, if the dividing line

taken from the viscous-layer solution is a streamline, the mass flow will be

conserved from the wall to any streamline in the outer flow. There is a

slight inconsistency in choosing a streamline for the boundary since, in the

inviscid outer flow, the total pressure is constant along a streamline while

the total pressure decreases slightly along a streamline in the viscous flow.

The streamline chosen in the present study passes through a point that is the

same distance from the wall as the height, Yviscous, at station x o. (See

fig. 2.) The shape of this line determines the configuration of the induced

compression wave and, hence, the predicted surface-pressure distribution. As

pointed out in reference 7, two methods (refs. 3 and 4), one employing the

displacement thickness line as the coupling line and the other employing the

local boundary-layer edge, give essentially the same pressure distribution

and hence must produce essentially the same turning of the inviscid flow.

The streamline chosen in this study was between the displacement thickness

line and the boundary-layer edge for the viscous layer in all cases considered.

Hence, the turning produced in the outer flow by this streamline, is essenti-

ally the same. In summary, it should be noted that upstream of xi, the vis-

cous layer turns the outer flow and the outer layer has no effect on the

solution of the inner layer.

When one considers the flow downstream of xi, the interaction between

the inner and outer flows requires a slight modification from that outlined

for the flow upstream of xi. This can be demonstrated by the following two

results: the first is for the case of a relatively weak shock wave interact-

ing with a laminar boundary layer, and the second is for a stronger shock

interacting with the same boundary layer. Figure 6 shows the surface-pressure
distribution data obtained from reference 12 for a weak interaction between a

laminar boundary layer and a shock wave. The predicted surface-pressure dis-

tribution obtained from the method of reference 3 by matching xo and xi is

indicated by the dashed curve. The streamline through Yviscous at xo was

obtained from this solution and was used as the io 9r boundary of the outer

flow. The outer flow was then solved with the met:_od-of-characteristics pro-

gram. The pressure distribution obtained from this solution is shown by the
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solid curve in figure 6. The agreement between the predicted pressures and

the data both upstream and downstream of x i is quite good, but this is not

the case when the shock strength is increased, as is shown in figure 7. The

upstream influence length is matched in the viscous solution (shown by the

dashed curve labeled I) and the resultant final pressure level underpredicts

the data, a behavior discussed in detail in reference 7. In order to deter-

mine the reason for this failure and suggest a possible remedy, the following

procedure was followed. The streamline for the lower boundary of the inviscid

solution was taken as before. The resulting surface-pressure distribution

from the outer layer (shown by the solid curve labeled 2) agrees reasonably

well with the data and the inner solution only up to the shock impingement

point. At shock impingement a discontinuity in the outer layer pressure dis-

tribution is evident. This discontinuity is similar to that shown for the

solid curve labeled i, the solution given by the method of reference i. Com-

parison of the inner and outer solutions revealed that the flow angles imme-

diately downstream of x i on the matching streamline were not the same.

The flow turning angle in the inner solution is not as large as that given by
the outer flow solution. This causes the reflection of a discrete shock wave

and the resulting pressure discontinuity, both of which are inconsistent with

physical observation. To surmount this difficulty in the present study, it

was hypothesized that the correct, coupled solution must have the same flow

angles in the inner and outer layers immediately downstream of shock impinge-

ment. An iterative procedure between the inner and outer solutions was

required to obtain this consistency in flow angle. The broken curve labeled

2 in figure 7 is the result of imposing on the inner solution the flow angle

taken from the second outer solution. The inner and, hence, the outer solu-

tions upstream of xi are not changed by this modification. The matching

streamline is then taken from this inner solution as the lower boundary for

the next outer solution. The procedure is seen to be convergent and may be

continued until the pressures from the inner and outer solutions agree. A

converged solution is shown by the curve labeled 3. One difficult F with this

procedure is that, in general, the inner solution does not satisfy the imposed

downstream boundary condition (refs. 3 and 4) nor does it pass through the

downstream saddle point (refs. 5 and 6). The solution is therefore prevented

from advancing farther downstream; thus the inner solution stops short of

both the final pressure level and the end of the interaction region, but

continues at least to the reattachment point. The exact nature of this dif-

ficulty is not fully understood at present; however, it is almost certain

that the solution of the viscous flow downstream of shock impingement requires
additional conditions other than those contained in the weak-interaction tech-

nique now employed. In any event, the results obtained from the viscous pro-

grams with the modified downstream turning angle stop short of the end of

interaction. Therefore, the matching streamline stops short of the end of

interaction. In the present study, in order to obtain a lower boundary for

the outer solution beyond the point where the program stopped, the slope of

the matching streamline was smoothly extrapolated from its value at the end

of computation to a value of zero at the station where the final surface

pressure is realized in the outer flow solution.

It appears that the proposed analytical method accounts for most of the

observed interaction phenomena, but it should be noted that the method is

549



in a research state. For example, the coupling between the inner and outer

layers and the iterative procedure discussed above must be done externally.

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

Some preliminary results obtained by the present method are compared in

the following sections with experimental results obtained for interactions

with laminar and turbulent boundary layers.

Flow-Field Characteristics

Flow-field characteristics obtained by the present method for an inter-

action with a laminar boundary layer are presented in figure 8. Also shown

for comparison is the schlieren photograph of the interaction taken from
reference 12. The interaction considered here is the same as that for which

the surface-pressure distribution was given in figure 6. The predicted iso-

bars (P/Po = constant) from the coupled analysis are shown in the sketch of

figure 8. The formation of the induced compression wave, expansion region,

and reflected wave are in good qualitative agreement with the observable fea-

tures of the schlieren photograph. The predictions of the surface-pressure

distribution throughout the interaction region are also in good quantitative

agreement as shown in figure 6.

The flow-field predictions for the interaction corresponding to those

conditions given in figure 7 are compared with the schlieren photograph in

figure 9. The analytical results also indicate good qualitative agreement

with the observed features. The iterative procedure outlined in the discus-

sion was needed to establish the downstream flow angle for the interaction

presented in figure 9, whereas in figure 8, no iteration was required. With-

out the iterative procedure, the analytical results would have shown a dis-

crete reflected shock rather than the broad compression region seen in both

the schlieren photograph and converged analytic solutions.

Surface Phenomena

Comparisons between surface-pressure data for laminar flow and predicted

pressures from the coupled method are shown in figures 6 and 7. For a turbu-

lent flow case the interaction data considered in figure 1 are compared in

figure i0 with the prediction of the present method. The previously discussed

iterative procedure was required to obtain the converged solution shown. A

small separated region is predicted, but the spacing of the experimental

data precluded any assessment of the validity of this prediction.

The results of heat-transfer predictions compared with the laminar

boundary-layer data considered in figures 7 and 9 are presented in figure ii.

The results obtained from the computing program of reference 3 are shown in
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figure ll(a). The curve labeled 1 is the solution without iteration on the

downstream flow angle, while the curve labeled 2 is the result from the

second iteration, and the curve labeled 3 is the result from the converged

solution. The iterative procedure brings both the magnitude and gradient of

the predicted heat-transfer rate into better agreement with experimental data.

Similar results, shown in figure ll(b), were obtained by the method of refer-

ence 4. The heat-transfer predictions obtained with the method of reference 4

agree somewhat better with the data than those obtained with the method of

reference S. No comparisons have been made in the present study of heat-

transfer rates in a turbulent-boundary-layer--shock-wave interaction.

Skin-friction results are easily obtained from the present method; but

since it is difficult to obtain Cf experimentally in interaction regions,
no demonstrably reliable data are available for comparison, However, a quali-

tative note concerning skin-friction behavior and the inferred separation

length can be made on the basis of results obtained from the present method.

The iteration procedure tends to shorten the distance from x i to the point

where the boundary layer reattaches, thus shortening the predicted length of

separation. This shortening would bring the predictions of the viscous

methods (refs. 3 and 4) into better agreement with experimentally observed

separation lengths (see ref. 7), but no quantitative comparisons have been

made at present.

CONCLUDING REMARKS

An effort was made to develop an improved analytical method for describ-

ing the details of the flow in the vicinity of a shock wave interacting with

either a laminar or turbulent boundary layer. A method was developed which

is, at present, useful as a research tool in the study of the interaction of

a shock wave and a boundary layer.

The analytical method employs the hypothesis that the boundary layer in
an interaction consists of two distinct layers, one inviscid and the other

viscous, and proposes a method of coupling the two layers. This method ade-

quately described the characteristics of the flow field in the vicinity of a

shock-wave--boundary-layer interaction as well as surface-pressure and

heat-transfer distributions at least up to the reattachment point.
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APPENDIX

THE EXTENT OF UPSTREAM INFLUENCE

General

The spreading of the pressure rise over several boundary-layer thick-

nesses upstream and downstream of the shock impingement location is a well-

known feature of shock-wave--boundary-layer interactions. As noted in the

text, information regarding the extent of upstream influence is required in

order to use any of the existing analytical methods (refs. 3-6) to obtain a

solution of the inner viscous layer as proposed in the present method. In

order to make the comparisons between theory and data presented in the main

text, a detailed examination of the specific data used was required. In par-

ticular, the extent of upstream influence taken from experimental data was

used in the analysis. These data, together with additional data from several

sources, were used to formulate correlations for the extent of upstream

influence for both laminar and turbulent entering flows. These correlations,

presented herein, may be used to obtain the length, lo, when an analytical
solution is desired but no experimental data are available.

Chapman, Kuehn, and Larson (ref. 13) used a weak-interation analFsis in

studying the interaction of a shock wave and a boundary layer. _en their

analysis is used to determine the extent of upstream influence, a functional

dependence of the form

l° (C Pp - Po)--=60 f fo' M°' "Po (AI)

is indicated. Attempts have been made to correlate existing data using equa-

tion (AI). Popinski and Ehrlich (ref. 14) considered wedge-induced interac-

tions for both laminar and turbulent entering boundary-layer flows, and

Popinski (ref. 15) considered externally generated shock waves interacting

with turbulent boundary layers. Satisfactory correlations were not obtained

in these studies since the deviation of some of the data from the recommended

correlation curves is over 300 percent of the value given by the curves. Dif-

ficulty is encountered in employing the relation implied by equation 6AI)

because the plateau pressure pp is, within experimental accuracy, constant

for a given entering boundary layer. The extent of the upstream influence

therefore cannot increase with increasing shock strength, a behavior that is

inconsistent with experimental observation. To circumvent this difficulty

in the present study, the functional form relating the important parameters of

the problem is taken to be

I°I--Y - f fo' M°'

where the reference length y
turbulent flow as follows.

Pfinalpo - P°1

is defined differently for laminar and

{A2)
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Laminar Boundary Layer

The correlation results for an interaction with an entering laminar

boundary layer are presented in figure 12. The data shown were obtained from

the interaction studies of references ii, 12, 13, and 16. The reference

length, y, in equation (A2) is taken to be _Q, the boundary-layer thickness
at the onset of the pressure rise as indicated in the sketch of figure 12.

The length, lo, is the distance from the onset of the pressure rise to the

station where the incident shock wave impinges on the edge of the boundary

layer. The choice of this impingement point can be made with reasonable cer-

tainty with the aid of a schlieren photograph of the interaction. In connec-

tion with determining the impingement point, xi, it is interesting to note

that, within the experimental accuracy of the data examined, the end of the

pressure plateau and the impingement point occurred at the same station. Note

that, in general, this impingement point cannot be obtained analytically from

inviscid considerations alone, since the physical configuration of the inci-

dent shock wave is modified by the induced compression region ahead of shock

impingement. However, using the coupled technique presented in the body of

this report, one can analytically obtain the point x i and, then through the

suggested correlation, obtain the length lo (and, hence, Xo). This is done

by the iterative process outlined below. First, the outer layer is solved

without any sublayer considerations as was done in reference I. This process

yields a first approximation to x i. Next, a value for 1o is obtained from

the correlation by assuming that the value of Rexo is that of Rexi. The
sublayer is then computed from one of the viscous interaction programs sug-

gested in the main text. The resulting streamline through Yviscous is

employed as the lower boundary for the outer layer solution, as outlined in

the main text. A different xi results and the entire process is repeated

until little or no change in the value of xi is obtained from two
successive calculations.

The functional form of the term involving Cfo in equation (A2) is taken

as C_fo in _agreement with the weak interaction analysis. For convenience

the term Rex_/4v has been substituted for C_fo for the laminar case; Mo is

the boundary-layer-edge Mach number at the onset of the pressure rise.

It can be seen from figure 12 that these parameters adequately correlate

the data for both separated and unseparated interactions over a wide range of

Mach numbers and shock strengths for a range of Rexo from about 105 to 106 .

The largest deviation of the data from the recommended correlation equation

o)/oMo final p O. 73

6 Re I/4 = 13.7\ Po (A3)

o Xo

is about 30 percent, while most of the data are within l^_rcent of the value

given by the curve. Perhaps using the actual value of ¢Cfo instead of

Re_/4 would reduce these deviations.
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Turbulent Boundary Layer

The thesis of the present work has been employed to develop a set of

parameters that give an adequate correlation for the extent of shock-induced

upstream influence for turbulent layers. The reasoning that was used to

select the parameters that might best describe the physical mechanism

involved in the upstream propagation of the pressure rise is as follows. The

forward propagation of the downstream disturbance must have its primary path

in the subsonic flow adjacent to the wall. The effects of viscosity limit

the extent of the upstream influence. The correct reference length in equa-

tion (A2), therefore, should be some height that encompasses the subsonic

flow and above which the effects of viscosity may be neglected. Thus, in

the present study, the height, Yviscous, obtained by the procedure outlined

in the main text is taken as the reference length, since below Fviscous the

flow is primarily viscous and contains the subsonic region. For turbulent

flow, x i is taken as the station where the incident shock impinges on the

local edge of the viscous sublayer, a procedure that is consistent with the

laminar case. Experimental determination of this station is somewhat sub-

jective, since no physical dividing line exists in the actual flow; however,

schlieren photographs of the interaction can be employed to obtain the sta-

tion x i. For the purposes of the present study, the impingement point was

taken from schlieren photographs at the position where the incident shock

disappears within the lower portion of the boundary layer. This station is

indicated in the sketch of figure 13.

Analytical determination of the shock impingement station is possible

by employing the iterative technique outlined for the laminar boundary layer

in the previous section of this appendix. Note that in contrast to the

laminar case, the term C¢_fo is not replaced by its corresponding Reynolds

number for the reasons outlined by Watson et al. (ref. 17). The values of

Cfo are obtained by employing a reference temperature method with the law-

of-the-wall exactly as done in reference 17.

The data (from references II, 17, and 18) are well correlated by the

relation

5.0

Zo _ Mo

Yviscous
= i0.7 (Pfinalpo - P°I2"

72

(A4)

The maximum deviation of a data point from the recommended curve is about

50 percent while most of the data are within 20 percent of the curve. This

latter deviation of the data from the correlation curve is probably within

the accuracy that the correlation parameters may be obtained, but might be

reduced if, instead of the actual edge Mach number, the Mach number at the

edge of the viscous sublayer were used. Equation (A4) appears to represent a

substantial improvement over previously existing correlation relationships.
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PREDICTION OF ANALYTIC MODEL
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COMPARISON OF PREDICTED AND EXPERIMENTAL SURFACE
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COMPARISON OF PREDICTED AND EXPERIMENTAL SHOCK WAVE

CONFIGURATION FOR LAMINAR FLOW (REFERENCE 12)
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COMPARISON OF PREDICTED AND EXPERIMENTAL SHOCK WAVE

CONFIGURATION FOR LAMINAR FLOW (REFERENCE 12)
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EXTENT OF SHOCK-WAVE INDUCED UPSTREAM INFLUENCE

FOR LAMINAR BOUNDARY LAYERS
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DISCUSSION

FERNANDO L. FERNANDEZ, Aerospace Corp.: I wonder if you could clarify

one point. For the range of conditions for which you have obtained solutions

is there some specific procedure that you use to determine Yviscous ?

ROSE: Just the one I used here.

FERNANDEZ: Do I understand that you take an initial profile, given

experimentally, and you change Yviscous until five boundary-layer thick-

nesses downstream you haven't changed the external profile, or something like

that?

ROSE: Yes, that is essentially correct; however, five boundary-layer

thicknesses is just a length that is commensurate with the length of the

interaction.

FERNANDEZ:

Yviscous"

But the answer is very sensitive to what you pick for

ROSE: Yes, although once above a certain height it doesn't seem to make

very much difference.

GEORGE R. INGER, McDonnell Douglas Corp.: Let me pursue this point a

little further. I notice from your figure 6 that your Yviscous is, in

effect, nothing more than the edge of the laminar sublayer.

ROSE: You can see that from the figure?

INGER: Yes. Indeed, that is exactly what you would expect by virtue of

the definition you used to define Y "s us in the first place. It isV CO
defined essentially as that part of t_e profile which is significantly

influenced by viscosity, and that is essentially the laminar sublayer for a

turbulent boundary layer.

So I would suggest that as a first approximation perhaps one could employ

the definition of the laminar sublayer criteria which you find in the

literature, to replace this.

ROSE: Yes, you can. Just a note on that. For the flows that I have

looked at, if you do a law-of-the-wall analysis based on a reference tempera-

ture, the values of y plus at the edge of the sub layer range from around

20 to i00 corresponding to the chosen value of Yviscous"

INGER: Okay, now I have a second question. What relationship does your

Yviscous bear to the so-called Lighthill sublayer thickness which would con-

tain the actual upstream influences of small disturbances? Do you know what

I am speaking of?

ROSE: Yes. Just generally larger.
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INGER: Well, can you give us some feel for .

ROSE: Well, for a turbulent boundary layer it is an order of magnitude

larger. My familiarity with the Lighthi11 sub layer method is that it is

generally very low in the turbulent boundary layer, simply because of the

shape of the profile.

INGER: A final question, if I may. I was wondering if in your analysis

there wasn't some element of semi-empiricism. I wasn't quite clear upon that

point.

ROSE: Yes, I have taken the value of lo, the upstream influence on the

value, from the data. However, I have looked at an awful lot of other data

during the course of this

INGER: But lo is your free parameter?

ROSE: Yes. I was going to say I have looked at a lot of other data, and

I do present in the written version some correlations for Zo. Using these

correlations, my method requires no additional empirical information.

MICHAEL S. HOLDEN, Cornell Aeronautical Laboratory, Inc.: I wonder if

you would comment on whether the method you give here would predict a super-

critical response in some cases of high Mach number flows over highly cooled

walls.

ROSE: The only thing I can say is that when I use the weak interaction

program, I am low enough in the boundary layer that I have obtained a sub-

critical response to the pressure pulse. It is conceivable you could get, for

example, a distorted turbulent boundary-layer profile, or if you jump the edge

Mach number up to S0 you could probably obtain a viscous layer that would

respond supercritically, but I haven't encountered that.

JACK N. NIELSEN, Nielsen Engineering and Research, Inc.: Did you have

any separated turbulent boundary layers?

ROSE: I haven't compared with any data that are obviously separated. I

should have noted on the last slide that the viscous interaction program pre-

dicted a small region of separation here, but the spacing of the data is

obviously so large that you can't possibly determine, at least from the

pressure distribution, whether separation is there or not. I haven't applied

the method as it stands now to any interaction strong enough to produce a

large separated region.

RAYMOND SEDNEY, Martin Company: I had two questions. One, is it correct,

then, to say, in light of your answer to the previous question, that you

didn't really use Lighthill's model except in the qualitative sense?

ROSE: That is correct, I used only his idea of the two-layer model.
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SEDNEY: Can I ask, in the viscous layer do you still use the boundary-

layer equations?

ROSE: The inner layer is exactly the laminar boundary layer, solved by

one of the methods that Murphy just described. He only had the continuity,

x momentum and total energy equations and the weak interaction equation.

SEDNEY: You shouldn't get reverse flow then.

ROSE: Yes you can. There is nothing in the weak interaction analysis

that excludes that.

ROBERT E. MELNIK, Grumman Aircraft Engineering Corp.: I think there is

one element that you probably overlooked in applying the viscous interaction

theory, and that is if you want to apply the boundary layer to the viscous

sublayer, you really have to match to a shear flow outside.

ROSE: I didn't overlook it in the sense of forgetting it. It is,

however, neglected in the analysis as pointed out in the written version.
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OPTIMIZATION OF SUPERSONIC INLETS USING

THE ME THOD OF CHARAC TERISTIC S

By Bernhard H. Anderson "_ _

Lewis Research Center _ _ _ _

INTROD UC TION

One of the limiting factors for high-speed computer evaluation of

the design and off-design potential of mixed compression supersonic in-

lets is the extensive trial and error procedures needed to arrive at op-

timum designs. The trial and error procedures encountered in on-design

optimization stem partially from the fact that the primary input quantities

to the computer program are only indirectly related to the important de-

sign parameters such as average throat Mach number, average flow angle,

and throat Mach number distortion. The computations for optimum in-

let performance over a Mach number range can become very estensive

since the choice of inlet contours is partially dictated by the off-design

performance requirements of the inlet.

The type of boundary data which must be prescribed to have a well-

set problem is fundamental in establishing a numerical solution to the

characteristic equations. However, with a proper formulation of the

boundary data, the engineering design parameters (such as throat Mach

number, nominal throat flow angle, and internal compression rate) can

be introduced directly as boundary conditions. This permits more direct

computations of optimum inlet contours with minimized Mach number

distortion at the inlet throat.

Once the design contours have been established, computations have

to be performed at lower Mach numbers to establish the off-design per-

formance of the inlet. If the inlet performs unsatisfactorily, the origi-

nal boundary contours must be modified and the calculations must be re-

peated at design as well as lower Mach numbers. Thus, multiple itera-

tions are encountered in off-design when inlet optimizing performance.

However, some properties of the inlet operating on-design can be re-

Precedingpageblank
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lated to desirable off-design characteristics. When these properties are

incorporated at design conditions, a reasonable starting configuration can

be obtained, and satisfactory performance can be achieved more rapidly

both at design and at lower Mach numbers.

The object of this paper is to report on a characteristic program

(ref. 1) formulated to incorporate directly the inlet design parameters of

internal compression rate, throat Mach number, and flow angle and to dis-

cuss some of the traits of on-design operation which are indicative of ac-

ceptable off-design performance.

SYMBOLS

M

q

•X, Y

#

P

Mach number

velocity

coordinates ratioed to cowl lip radius

local Mach angle with respect to local flow angle

density

local flow angle

stream function

Subscripts:

C cowl surface

CB centerbody surface

FORMULATION OF BOUNDARY DATA

Consider the supersonic portion of the inlet flow field within the cowling

to be constrained between two arbitrary boundaries, one of which may be
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undefined (see fig. 1). To have a well-set problem, initial data must be

provided and two additional boundary conditions must be prescribed. How-

ever, there are four available boundary data from which the necessary

pair may be chosen. These would include (1) the cowl surface contour

Y = Yc(X), (2) the Mach number distribution along the cowl surface

M = Mc(X), (3) the centerbody surface Y = YcB(X), and (4) the Mach

number distribution along the centerbody surface M = McB(X). Thus, the

possible combinations of boundary data that could be prescribed are as

follows:

(1) Two boundary curves (fixed boundary problem)

(2) One boundary curve and one Mach number distribution (free bound-

ary problem)

(3) Two Mach number distributions (doubly free boundary problem)

It is not possible, however, to choose both the surface contour and the cor-

responding Much number distribution if the downstream leading characteris-

tic from the initial data line intersects the boundary.

Fixed Boundary Problem

The conventional characteristic program prescribes both boundaries, and

thus the equations of the bounding surfaces become the program input varia-

bles. The calculation of the inlet flow field proceeds downstream from the

initial data line to the solid boundary (fig. 2). When the flow field of one

boundary is completed, the calculations continue downstream along the op-

posite characteristic from the previous flow field. If a particular flow field

must be established, a trial and error iteration for the surface contours must

be used.

Free Boundary Problem

The most desirable free boundary problem is obtained prescribing the

centerbody surface and the corresponding Much number distribution along

that surface. The cowl contour that provides this Much number distribution
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is then calculated by the characteristic program. Since the centerbody sur-

face contour and Mach number distribution are prescribed, the calculations

proceed upstream from the centerbody surface to the unspecified cowl sur-

face (fig. 3). For this free boundary problem, the establishment of the un-

known cowl surface Y = Yc(X) essentially reduces to finding the streamline

which passes through the specified cowl lip. In any inviscid flow, the stream-

lines (by definition) form surfaces across which there is no flow and conse-

quently they may be replaced by a solid surface. The streamlines can either

be determined by constructing them piecewise or by integrating the mass

flux from a known boundary. This latter course was chosen and proceeds as

follows. The inlet mass flow is first established by the integration of the

mass flux along the initial characteristic or data line. This inlet mass flow

is used as the stream function normalizing factor. The inlet flow field is

constructed by successive field point calculations in the upstream direction

as shown in figure 3. Simultaneously with the field point calculation, a mass

flux integration is performed. When the normalized stream function exceeds

unity, an iteration is performed to locate the streamline #/= 1.0. The in-

ternal flow field calculations continue in a similar manner until all the bound-

ary data are used.

To minimize the Mach number distortion at the inlet throat, the desired

centerbody surface contour and the corresponding Mach number distribution

are specified to the throat conditions. Downstream of this location on the

centerbody, the throat Mach number and centerbody surface angle are held

constant until the flow field calculations indicate that a uniform Mach number

distribution has been established across the inlet throat. The position where

uniform flow is achieved is the geometric throat of the inlet.

Equations for Streamline Tracing

The equations used for tracing the inlet streamlines are obtained by in-

tegration of the continuity relation along either a C+ or C- characteristic;

thus,
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YBgJB =_A + pqy dy
M sin(p + 3)

YA

(1)

where the + or - is used for integration along a C+ or C- characteris-

tic, respectively. The integral on the right side of equation (1) represents

the accumulation of mass flow between YA and YB in the flow field. If

the interval AB is used as the distance between successive points on the

characteristic net (along the appropriate characteristic), it may be assumed

that the flow field properties take on the average values at the points A and

B. Thus, for axisymmetric flow,

_B = _A + 4 sin(p • 8) A sin(p + 0

For two-dimensional flow, equation (2) reduces to the expression

g_B = _A + 2 sin(p + 3) A sin(_ + 0

For a simple wave region the integration of equation (1) takes on a particu-

larly simple form since the flow field properties are constant along either a

C+ or C- characteristic; hence,

_B = gJA + Pq (YB - YA ) (4)
M sin(/1 + 0)

The derivation of the equations used for streamline tracing appeared first

in reference 2.

In principle s the establishment of one physical boundary by means of a

mass flux integration does not preclude flows where shock waves are pre-
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sent. Under these conditions, however, the integration must account for

changes in entropy experienced across the shock waves.

OFF-DESIGN INLET CALCULATIONS

Theoretical calculations for the inlet design study presented herein

were made using the computer program described in reference 1. The

on-design configuration was established by prescribing the internal center-

body surface contour and its Mach number distribution and then solving

for the cowl contour. Downstream of the compression region, the Mach

number was held fixed at the throat value in addition to keeping the center-

body surface angle constant. Once the inlet contours were established,

off-design calculations were performed based on the design point contours

and the variable geometry features of the inlet.

Bicone Mixed Compression Inlet with Cowl Lip Angle of 5.0 °

Figure 4 shows a bicone mixed compression inlet designed for a free-

stream Mach number of 2.5. The inlet forebody was composed of a 10.0 °

and 18.5 ° bicone configuration. The initial internal cowl lip angle was set

at 5.0 ° and the resulting cowl lip shock was cancelled by an expansion cor-

ner at the centerbody shoulder, while subsequent compression was achieved

isentropically. With a design throat Mach number of 1.3, the theoretical

total pressure recovery behind the terminal shock was 0. 968. For the in-

let configuration shown in figure 4, the throat was located at about X = 3.2.

The inlet was designed to have a collapsing second cone to allow the

inlet to operate at off-design conditions. For off-design operation, the

second cone was collapsed with a fixed forward hinge-point location such

that the cowl oblique shock intersected the centerbody shoulder. Thus,

for the calculations presented, the second cone angle was dictated by the

shock-on-shoulder condition, while the spike tip remained fixed relative
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to the cowl lip. Consequently, hinge joints were located at the junction of

the first and second cone and at the centerbody shoulder. The centerbody

surface downstream of the shoulder hinge joint was considered to remain

parallel to the design point surface during the collapsing process. The

design centerbody position is indicated in figure 4 by the solid line, while

the Mach 2.0 position is represented by the dashed line.

An inherent trait of this type of inlet at off-design conditions is the

appearance of an expansion just downstream of the shoulder as indicated

by the Mach number distribution computed for Mach 2.0 operation (fig. 4).

At design point operation, the compressive turning of the cowl oblique shock

was cancelled by the abrupt turning at the centerbody shoulder point. Col-

lapsing the centerbody to permit operation at lower Mach numbers de-

creased the deflection angle of the cowl lip shock faster than the shoulder

angle was reduced. As a result, an expansion occurred just behind the

shoulder point. This, in general, caused flow distortion at the inlet throat

which tended to increase the average throat Mach number and to produce

alternating expansion and compression regions on both the centerbody and

cowl surfaces. In general, the compression following the expansion tended

to amplify the downstream direction causing high local compression rates.

High compression rates on the cowl surface resulting from a cowl inflec-

tion point upstream of the inlet throat generally aggravated local compres-

sion rates at off-design conditions. This permitted the compression waves

to prematurely coalesce and contributed to higher distortion levels and lower

local Mach numbers ahead of the inlet throat. This would suggest that the

angular surface distribution along the cowl contour is a sufficiently sensi-

tive index to evaluate off-design performance prior to performing the cal-

culations. The theoretical results presented in references 3 and 4 sub-

stantiate this conclusion. In general, it was concluded in these references

that overall off-design improvements can be realized by decreasing the

compressive turning rate along the cowl surface, and this compression rate

appears to be limited by off-design considerations. It was also found that

matched compression rates on the cowl and centerbody during on-design

operation, appeared to provide good off-design flow.
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Bicone Mixed Compression Inlet with Cowl Lip Angle of 2.0 °

Figure 5 shows the same bicone forebody inlet configuration as does

figure 4, but with the cowl angle reduced from 5.0 ° to 2.0 ° and the inlet

increased about 6 percent. This decrease in the cowl lip angle reduced

the theoretical total pressure recovery from 0. 968 to 0.959. The Mach

number distribution on the centerbody surface was chosen such that no

inflection point occurred on the cowl contour upstream of the inlet throat.

When this condition was satisfied, the Mach number gradients on both the

cowl and centerbody surfaces internal to the inlet became nearly equal at

design operation (fig. 5). Consequently, at a free-stream Mach number

of 1.8, the high local compression rates that were prominant in the pre-

vious inlet example were greatly reduced. In addition, the Mach number

distortion at the inlet throat was greatly improved.

CONCLUDING REMARKS

Previous inlet characteristic programs have required that the inlet

surfaces be specified to obtain a numerical flow field solution. The inlet

design parameters, such as internal compression rate, throat M_ch num-

ber, and flow angle, were introduced as direct input data to the computer

program by a reformulation of the boundary conditions necessary to achieve

a solution to the characteristic equations. Specifying these flow parame-

ters provides a direct method of obtaining optimum inlet contours with low

throat distortion. Near-optimum inlet performance was nearly assured at

off-design conditions by requiring a low compressive turning rate along the

cowl surface. This requirement on the inlet contours for design operation

directly provided a very good initial configuration from which further modi-

fications could be made.
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COWL SURFACE: Y = Yc(X), M =IViC(×)

CENTERBODY SURFACE: Y =YcBIX), M = McBIX)

X-COORDINATE

Figure1

Y-COORDINATE

FIXED BOUNDARYPROBLEM

COWL SURFACE: Y =Yc(X)

"4

CENTERBODY SURFACE Y = YcB(X)

X-COORDINATE

Figure2

578

11 I] J li



Y-COORDINATE
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DISCUSSION

C. R. LIMAGE, LTV Aerospace Corp. : I want to know if your conclusion of

the improvement in off-design performance through the use of reduced cowl

angle holds for translating spikes also?

ANDERSON: I don't know, but the thing I do believe is that the on-design

properties of inlets can often give clues to the off-design performance. This

depends on the type of inlet you are using and also the type of variable

geometry mechanisms. I believe one should always take advantage of any prop-

erties like this, if one is going to go through an optimization study. It

saves time, and that is the only point I am really trying to make.
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PREDICTION OF SUPERSONIC AND HYPERSONIC INLETFLOW I_IELDS

By Norman E. Sorensen, Eldon A. Latham,

and Shelby J. Morris

Ames Research Center

SUMMARY

t
l,

F

Two computer programs are currently available that predict the flow field

properties in supersonic'and hypersonic inlets. One is termed an inviscid

program that does not take the boundary layer into account. The other is

termed a viscous program and takes into account the boundary layer and the

interactions between the shock wave and the boundary layer. Neither program

accounts for boundary-layer bleed which may be required to prevent boundary-

layer separation. Experimental data have demonstrated the degree of confi-

dence that can be placed in these methods of predicting the flow fields.

The major objectives of the present paper are to assess the adequacy of

both prediction techniques and to indicate what modifications are required to

improve the accuracy of the predictions. The inviscid program is considered

adequate for supersonic inlets with boundary-layer bleed, but inadequate for

hypersonic inlets where relatively thick boundary layers develop. For hyper-

sonic inlets that incorporate boundary-layer bleed the viscous program is

considered to be marginally adequate in its present form. In addition, the

turbulent boundary-layer and shock-wave boundary-layer interaction models

employed in the program are not considered adequate and should be improved if

boundary-layer bleed is to be accounted for effectively.

IF INTRODUCTION

The development of suitable inlets for propulsion systems of supersonic

and hypersonic vehicles depends on theoretical as well as experimental tech-

niques. Once the basic inlet performance requirements for a particular vehi-

cle mission have been defined, the designer must determine, among other things,

suitable contours for the supersonic or hypersonic inlet diffuser of the com-

plete inlet system. For cruising flight at high Mach numbers, the most likely

inlet appears to be the mixed-compression type with high theoretical perfor-

mance capabilities. The successful development of this type of inlet requires

accurate knowledge of the compression flow fluid properties to avoid flow sepa-

ration and to attain uniform flow in the inlet throat. Computer programs are

currently available that predict the viscous as well as the inviscid flow

field properties. These programs do not account for boundary_layer bleed,

which may be required to control separation of the boundary layer. Such pro-

grams have allowed wind-tunnel testing of large-scale inlet models to proceed

with varying degrees of confidence. Experimental data from these tests have

demonstrated the degree of confidence that can be placed in the current

methods of predicting the viscous and inviscid portions of the flow field.
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The major objectives of this paper are to show how accurately supersonic and

hypersonic inlet flow fields can be predicted without including boundary_layer
bleed effects and to indicate what modifications are required to improve the

accuracy of the predictions.

SYMBOLS
,K

M
OO

_P_
P_

Pt

Pt
O0

Re

x

R

height above the surface, in.

free-stream Mach number

static pressure ratio

pitot pressure ratio

capture radius, in.

Reynolds number

axial distance

capture radius

angle of attack, deg

boundary-layer height

PROGRAMS

Two types of computer programs have been used to calculate the inlet flow

fields. One is a program that does not account for the presence of the bound-

ary layer. For convenience it will be referred to as the inviscid program

and is fully described in reference I. This type of program has also been

described by Mr. Anderson in a previous paper. The second program solves both

the boundary layer and the inviscid flow. It will be referred to as the vis-

cous program and is described in references 2 and 3. The major features of

the viscous program are shown in figure I. The program uses the local simi-

larity method to solve numerically the classical laminar boundary-layer equa-

tions. The turbulent solution employed in this program is a first-order

integral parameter solution in which a power law velocity profile and the skin

friction law of Sivells and Payne are used with a reference enthalpy procedure

to account for the effects of compressibility. Boundary-layer transition from

laminar to turbulent is assumed to occur instantaneously at some chosen input

point, and continuity of displacement thickness is imposed at the transition

point to avoid large excursions in the computed pressure. The accuracy of the
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laminar boundary-layer predictions is adequate when edge vorticity and normal

pressure gradient effects are small. The turbulent predictions, however, are

in serious question because of the crudeness of the model employed and the

requirements imposed by inlet designs. In brief this comes about because

there are no demonstrably accurate methods for predicting turbulent boundary

layers in adverse pressure gradients, and inlets by their very nature impose

severe adverse pressure gradients. The viscous program also accounts for

shock-wave boundary-layer interaction. The procedure for simulating the inter-

action analytically is to treat the viscous interaction region as a discon-

tinuous control volume. The continuity and momentum equations then are

satisfied across the control volume, while the details of the flow in the

interaction region itself are neglected. Efforts to improve the modeling of

this phenomenon were outlined in previous papers by Messrs. Rose and Murphy.

The viscous program can be used to calculate flow fields for either

sharp or blunt leading edges on the cowl and centerbody. The blunt body

solution of Lomax provides accurate solutions for free-stream Mach numbers

greater than 4. However, this paper will consider only axisymmetric inlets

with sharp leading edges. Finally, the program is versatile being applicable

to two-dimensional or axisymmetric inlets, real or perfect gases, and cooled

or uncooled walls for inlets designed for a wide range of Mach numbers.

Supersonic Inlets

Currently, supersonic inlets for Mach numbers of at least 3.5 are

successfully designed solely by inviscid programs (ref. 4). The boundary

layer can be ignored primarily because the usual amount of bleed required to

control it compensates very closely for the effective contour displacement

that would result from its presence. This is illustrated with the aid of

figures 2 and 3. Figure 2 shows the shock-wave structure for the portion of

the inlet system shown in the inset. The shock-wave structure shown was cal-

culated by the two programs for a mixed-compression inlet with a 10-inch cap-

ture radius designed for a Mach number of 3.5 and a Reynolds number of

approximately 2.5xi06 per foot and 0° angle of attack. The predicted

boundary-layer height is also indicated. For these inlet contours including

the boundary layer reduces the throat Mach number. This is indicated by the

foreshortened shock-wave structure predicted by the viscous program compared

to that predicted by the inviscid program. In fact the viscous program

stopped computing at a point just upstream of the throat because the flow

became subsonic. Without boundary-layer removal, the theoretical effective

contraction at this point was great enough to choke the flow. Figure 3 com-

pares the predicted pressure distributions on the centerbody and cowl calcu-

lated by the two programs with experimental data for the same inlet and test

conditions of figure 2. Surface static pressure ratio is plotted as a func-

tion of axial distance. The model from which the experimental data were

obtained provided for boundary-layer bleed which permitted the centerbody to

be retracted to the design postion. The data, therefore, include the effects

of 8-percent bleed. The viscous and inviscid predictions agree with the data

up to the throat station. The highest pressure ratio of 32 in the throat was
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predicted better with the inviscid program. Tests of many other supersonic

inlet designs have shown similar agreement with the predictions. The main

conclusion here is that if a viscous program is to be more accurate than an

inviscid program for supersonic inlets with boundary-layer bleed, the effect

of bleed in reducing the effective contour displacement of the boundary layer

must be accounted for. In addition, the theoretical understanding of what
is required to optimize the bleed could be enhanced.

Hypersonic Inlets

The prediction of flow fields for hypersonic inlets is not as well in

hand as for supersonic inlets. Neither the present inviscid or viscous pro-

gram can be relied on to predict hypersonic flow fields as accurately as
supesonic flow fields. The various reasons for this situation are illustrated

in figures 4, 5, and 6. Figure 4 shows the shock-wave structures predicted

by the two types of programs for a mixed-compression inlet with a 5-inch cap_
ture radius designed for a Mach number of 5.2 at a Reynolds number of 2.5×10

per foot and 0° angle of attack. The predicted boundary-layer height is also

shown. A comparison of this figure with figure 2 for the supersonic inlet

shows what appear to be similar differences in the shock-wave structures pre-

dicted by the inviscid and viscous programs. However, the incremental differ-

ences in the average Mach numbers in the throats predicted by the two programs

are approximately three times as large for the hypersonic inlet as for the

supersonic inlet. More specifically, the incremental differences are 0.75

Mach number between the viscid and inviscid predictions for the hypersonic

inlet and 0.25 for the supersonic inlet. The reason is that the boundary
layer occupies a greater percentage of the flow area in the throat of the

hypersonic inlet causing a greater incremental difference in predicted Mach

number. Thus the inherent demands for accuracy become much greater for the

hypersonic inlet designs. The inviscid program by itself is inadequate for

predicting flow fields in inlets at hypersonic speeds.

Comparison of results predicted by the viscous program with experimental

results has revealed additional problems. Figure 5 compares the predicted

pressure distributions calculated by the two programs with the experimental

distribution for the same inlet and conditions of figure 4. Surface static

pressure ratio is plotted as a function of axial distance for the centerbody

and cowl. When ii percent of the capture mass flow is removed through the

boundary-layer bleed areas indicated in the figure, the agreement of the vis_

cous predictions with experimental results is better than for the inviscid

predictions. However, the highest level of compression at the throat is under-

predicted by both programs. That is, the bleed, required to achieve the high

experimental compression ratio of approximately 120, has not compensated for

inaccuracies in the viscous program as was the case for the supersonic inlet,

and the inviscid predictions are simply more inaccurate. An indication as to

the reason for the underprediction is shown in figure 6. Experimental

boundary-layer profiles for the same inlet and test conditions as those of

figure 5 are compared with the predicted profiles. Pitot pressure ratio is

plotted as a function of the height above the surface for two longitudinal

stations on both the cowl and centerbody. Comparisons show that at the survey
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stations upstream of the boundary-layer bleed areas on the cowl side (station
2), the boundary-layer thickness is reasonably well predicted. On the center-

body side (station 1), the predicted thickness is much greater than measured.
Measurements made downstream of the bleed areas in the locations near the

throat show that on the centerbody side (station 3), theory and experiment
agree. However, it should be noted that the theory does not include effects

of bleed and since, in addition, the upstream profile does not agree with the
theory the conclusion is that the profile agreement in this case is rather
fortuitous. On the cowl side (station 4), the profile agreement is poor with
the predicted height only about 50 percent of the experimentally measured
height. This greater height or, more importantly, the effective contour dis-
placement, particularly in the throat region, increases the effective contrac-
tion and leads to a higher pressure ratio than predicted by the viscous
program as shown in figure 5.

Status of Programs

The adequacy of the available programs and requirements for improved
accuracy are summarized in figure 7. The inviscid program is considered
adequate for the prediction of flow fields for supersonic inlets in which
boundary-layer bleed is employed because bleed fortuitously compensates for
the effective displacement of the inlet contours caused by the boundary layer.
The program, however, is inadequate for predicting hypersonic inlet flow
fields even with bleed because the relatively large amounts of boundary layer,
particularly in the throat region, cause enough effective displacement of the
contours that the usual amounts of boundary-layer bleed required for
performance do not adequately compensate.

The viscous program is believed to be marginally adequate in its present
form for predicting flow fields for hypersonic inlets requiring boundary.laTer

bleed. It is considered less adequate than the inviscid Program for super-
sonic inlets requiring bleed because the reduction of the effective contour
displacement of the boundary layer caused by bleed is not accounted for. For
this and other previously mentioned reasons, the viscous program requires

several modifications for greater accuracy. For inlets in which boundary-
layer bleed is required the effective change in the inlet contours must be
taken into account in the calculations to properly account for the effects
of the boundary layer on the inlet compression field. The present turbulent
boundary-layer and shock-wave boundary-layer interaction models employed in
the program are not considered adequate and should be improved if boundary-
layer bleed is to be accounted for effectively.
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DISCUSSION

HOLT ASHLEY, Stanford University: I'd be very interested in hearing

either of the last speakers, or anybody else that wants to speak up, tell us

what is being done theoretically these days about another parameter which

hasn't been mentioned in either of these papers, that is the very important

effect of angle of attack on inlets with axisymmetric geometry.

SORENSEN: You are asking a question about another difficult problem.

Admittedly, it is one that we would like to solve theoretically, but there

doesn't seem to be anything on the horizon, to my mind, other than - I see

Mr. Rakich has his hand up over here.

JOHN V. RAKICH, NASA, Ames Research Center: I'm glad you asked that

question. I presented a paper on the first day of the conference on the

method of characteristics for three-dimensional flow and the applications to

date have all been to external flows. However, there should be no reason why

we couldn't apply it directly to these more difficult problems of inlets

simply by putting a solid boundary condition at the outer portion of the flows

instead of a shock wave. However, it is more complicated because we have to

consider the reflected shocks.

JOHN KURZROCK, General Motors Corp., Allison Div.: My first question I

think you answered in your summary, but it appears that you don't take care

of the bleed with your boundary-layer calculation at all. If there is a bleed

or if there isn't, it doesn't really matter.

SORENSEN: No, we don't account for it, that's true, but it certainly

does matter.

KURZROCK: I mean theoretically. Experimentally, of course, it shows

some effect, but analytically you haven't taken account of that boundary con-

dition in your boundary-layer calculation.

SORENSEN: That's right.

KURZROCK: My other question is: How do you account for your boundary

conditions for your inviscid characteristics solution and your boundary-layer

displacement effect? Is there an interaction between the two? Do you calcu-

late displacement thickness and then this forms the boundary for your charac-

teristics program, or do you iterate back and forth? Could you say a few

words about these?

SORENSEN: This program simultaneously computes both the inviscid and

viscous flow field. The shock wave normally emanates from the displacement

thickness of the boundary layer, but it is done simultaneously. It is not the

kind of program that calculates the inviscid solution and then calculates the

boundary layer and goes back and puts it in as a displacement thickness. It

does it all at one time.
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GINO MORETTI, Polytechnic Institute of Brooklyn: I would just like to

make a brief comment on Mr. Rakich's comment. I am very pleased with his

optimism. Unfortunately, I don't share it completely because of personal

experience with the method of characteristics in three dimensions. I think

it is not very adequate for internal flows, and personally I would very much

rather like the finite difference technique, which, incidentally, has been

attempted for three-dimensional internal flow by Ricardo Bastianon and myself

four years ago, I think, and presented at the AIAA meeting in New York in

1967. At that time we made a very sketchy example of a three-dimensional

intake with a shock building up into part of the intake.

Now, that was far from being a finished program, but anyway, it showed

the possibility of applying the technique to three-dimensional intakes for

inviscid flow. It seems to me that the amount of work involved in making the

inviscid flow computation with the finite difference is by far smaller than

the amount of work involved if you work with the method of characteristics.

EDWARD W. PERKINS, NASA, Ames Research Center: I think that over the

years we have made a considerable improvement in our ability to design inlet

systems through the development of theoretical techniques which are available,

as poor as they are at the present time. But one of the things that we really

lack is a good theoretical framework for looking at the effects of angle of

attack on the inlet performances, and we certainly feel that is an area we

would like people to consider.

EARLL MURMAN, Boeing Scientific Research Laboratories: Does either the

inviscid or the viscous program for the supersonic inlet predict the flow

field distortion very well at the throat?

SORENSEN: The inviscid solution does not, but the viscous solution does

give you a boundary layer with some representation of the true throat' distor-

tion. We presented a paper here at Ames two years ago at the Hypersonic

Aircraft Technology conference that showed some comparisons. The paper showed

a reasonably good comparison with the experiments using the viscous program,

but it was not perfect.

MURMAN: The viscous wasn't better?

SORENSEN: The viscous wasn't - The inviscid turned out to be better

because the boundary-layer bleed just compensates for the displacement of the

boundary layer. We have worked with it long enough now, and we have enough

experience that we feel pretty confident in making judgments in what the com-

puter program tells us and what will happen in the wind tunnel.

SIDNEY A. POWERS, Northrop Corp.: I'd like to add a little oil to the

troubled fires over here, replying to Professor Moretti. In a paper in a

session that he chaired at Denver in 1966, we attacked a problem for Marshall

of intereaction of local eddy in exhaust fumes by a three-dimensional method

of characteristics. The San Diego Convair people - Thommen, I think it was -

attacked the identical problem with the finite difference method.

Now, both of us were less than completely satisfactory, but in a

situation where shocks are so terribly important as inlets, the finite
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difference method smooths out so badly that you have a hard time telling what

is error build-up and what is shock. So I agree with John Rakich. I think

the three-dimensional method of characteristics is probably the way to go for
inlets at angle of _ttack.

RAYMOND SEDNEY, Martin Company: I'm curious both with respect to your

paper and the previous one. Can you give us some idea of how much computer

time the programs take, and also (I can't remember whether it was you or the

previous speaker who mentioned the possibility of taking into account real gas

effects) are nonequilibrium real gas effects important, and is there any need
to take them into account?

SORENSEN: The first part of your question about the time, the inviscid

programs generally run under a minute on the 7094. The present version of the

viscous program that we have can take up to an hour on a computer. However,

we have an improved version which we will be obtaining) which should run about

20 minutes for a typical case on the IBM 360-65.

About the real gas effects up to Mach 5 at least, compressing down to

nearly a sonic throat, even there the effects are not very significant, and

when you go above Mach 5, we are talking about supersonic burning in those

designs where the Mach number comes down to somewhere around, say) half of the

free-stream Mach number, and there again, since there isn't too much com-

pression, real gas effects are not really too important.

PERKINS: With respect to the question of equilibrium, they are all

equi lib rium cal cul ati ons.

Dr. Moretti, would you like to have one more word?

MORETTI: All right. Of course, by now everybody knows what my comment
is going to be.

My firm opinion is that the method of characteristics is a finite differ-

ence technique as much as any other finite difference technique, so that the

same kind of criticism and objection can be raised to both techniques. There-

fore, I think that one should be very careful in making statements which are

so general, such as "finite difference techniques smear out bumps or discon-
tinuities and the method of characteristics doesn't." That's not true at all.

I can show you examples in which the relative errors are easily reduced to

less than one tenth of one percent when the calculation is performed by a

finite difference technique. But of course you have to use a good technique!
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SUMMARY

A method has been developed to obtain a transonic flow solution in a par-

tially guided passage. This method is based on extending a strictly subsonic

finite-difference stream-function solution to the case where there is locally

supersonic flow. This extension involves the use of a velocity-gradient equa-

tion which must be satisfied together with continuity. It is assumed that shock

losses are negligible. A numerical example for flow through an axial stator is

compared with experimental results. A technique is suggested for using this

method for exterior flow problems.

_TRODUCTION

There are several useful techniques for calculating fluid velocities through

a passage. Two of these are the finite-difference solution of the stream-

function equation and the velocity-gradient (stream-filament) method. Each

has advantages and limitations. In particular, the finite-difference solution

of the stream-function equation (e. g., ref. 1) is limited to strictly subsonic

flows. The velocity-gradient methods are not limited in this way (e. g., ref. 2).

On the other hand, a simple velocity-gradient method is limited to a well-guided

channel. The purpose of this paper is to explain how these two methods have

been combined to extend the range of cases which can be solved so that locally

supersonic (transonic) solutions can be obtained even in a poorly guided

channel.

This method has been programmed for turbomachinery applications. The

program, called TSONIC, is available and is fully described in reference 3.

TSONIC obtains the numerical solution for ideal, transonic, compressible flow

Precedingpageblank
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for axial, radial, or mixed-flow cascades of turbomachine blades. The

blades may be fixed or rotating. In this paper, a numerical example using

this program is given.

Finally, there is a possibility of extending this method to exterior flow

problems. Such a method is suggested in the concluding section.
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SYMBOLS

stream-channel thickness, meters

specific heat at constant pressure, J/(kg)(K)

stream-channelwidth (fig.3), meters

pressure, N/meter 2

blade pitch, meters

radius of boundary surface, meters

radius, meters

distance along a streamline, meters

temperature, K

time, sec

stream function

_u/_x

Ou/ay

02u/_x2

02u/_x 0y

_2u/_y2

velocity, meters/sec

weight flow, kg/sec

x-coordinate

y-coordinate
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3/

7?

0

P

streamline flow angle from x-axis, rad

specific heat ratio

outer normal to region

polar coordinate, rad

density, kg/meter 3

Subs c ripts:

in inlet

out outlet

x x-component

y y-component

l first point

2 last point

Superscripts:

' stagnation condition

- vector quantity

METHOD OF ANALYSIS

The method described here is based on a combination of two other

methods: a finite-difference stream-function analysis and a velocity-

gradient analysis. For a well-guided passage, transonic solutions can be

obtained directly by a velocity-gradient analysis because the direction and

curvature of the flow are accurately known from the shape of the passage.

However, for a wider passage without close wall guidance, the streamline

curvatures cannot be estimated with sufficient accuracy. In this case, a

subsonic solution is obtained at a reduced flow first in order to locate

streamlines. The assumption is then made that the direction and curvature

of the streamlines do not change significantly in passing from high subsonic

to locally supersonic flows. After a subsonic solution is obtained, therefore,

a transonic solution can be obtained by using the subsonic streamline direc-

tions and curvatures with the velocity-gradient methods.
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Subsonic Solution

The weight flow through the passage is reduced in order to allow a totally

subsonic solution (no locally supersonic regions) to be obtained. This sub-

sonic solution yields information necessary for the velocity-gradient solution.

This information consists of three items, each a function of the x, y coordi-

nates. These three functions are

(1) _, the angle of the streamlines with respect to the x-axis

(2) d_/ds, the streamline curvature

(3) aV/_x, the gradient of the velocity in the x-direction

These three functions, _, d/3/ds, and _V/_x can be obtained from sub-

sonic solutions, such as the following:

(1) Solution of the stream-function equation

(2) Solution of the potential-function equation

In order for a stream function to be defined, the weight flow crossing a

line between two points must be independent of path. This requires that the

flow be either incompressible or steady, and also, of course, that the flow

be two-dimensional (i. e., on a surface, although not necessarily on a plane).

A potential function, on the other hand, exists only if the flow is irrotational

relative to the coordinate system used. These restrictions are summarized

in the following table:

Function Restrictions

Stream (1) Incompressible o_.rrsteady

(2) Two-dimensional

Potential Irrotational

Since the method is to be applied to stream surfaces in a turbomachine

with varying radius and a rotating coordinate system, the flow would not be

irrotational with respect to the rotating coordinate system. For this reason,

the stream function was used instead of the potential function. For other ap-

plications, the potential function may be more suitable.

In references 1 and 4, this method is applied to rotating turbomachine

blades of either axial, radial, or mixed flow. To illustrate the principles

of the method, it will be adequate to consider a two-dimensional cascade in
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the x-y plane. If the flow is assumed to be absolutely irrotational, the stream

function u will satisfy the following equation (ref. 5):

_2u+a2u 1 _(_x_u+_pp _)=0 (I)
_x 2 ay2 p ax _y

For the solution of equation (1), a finite region is considered (as indicated

in fig. 1). The stream function u can be normalized so that u is zero on

the upper surface of the lower blade, and 1 on the lower surface of the upper

blade. Then the derivatives of the stream function satisfy

au b_Vy (2)
ax w

an _ bp Vx (3)
by w

When the flow is entirely subsonic, equation (I)is elliptic. (Itmust be

remembered that p is a function of the derivatives of u; see ref. 5.)

Boundary conditions for the entire boundary ABCDEFGHA of figure 1 will

determine a unique solution for u. These boundary conditions are given in

the following table:

IIII l[i II-II II I_ Ii II II II
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Boundary conditionBoundary

segment

AB

BC

CD

DE

EF

FG

GH

AH

u is l less than the value of u on GH at

the same x-coordinate

u=0

u is less than the value of u on EF at

the same x-coordinate

tan /3ou t

u is 1 greater than the value of u on

CD at the same x-coordinate

u=l

u is 1 greater than the value of u on

AB at the same x-coordinate

_(-_)in - tanq_in

Equation (1), subject to these boundary conditions, can be solved nu-

merically by a finite-difference method. In this case, a uniform mesh was

used, as illustrated in figure 2. A finite-difference equation is written at

each mesh point, resulting in a large number of equations, with the same

number of unknowns. The numerical solution of these equations involves two

levels of iteration because equation (1) is nonlinear. The inner iteration is

required to solve equation (1) when it is linearized, and the nonlinear solution

is approached by the outer iteration.

After computing a numerical solution to equation (1) in a given flow re-

gion, the velocity at any point can be computed from equations (2) and (3) by

using numerical differentiation. The three functions (_, dfl/ds, and _V/_x)

can also be calculated. The angle _ is known since the velocity components
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are known from equations (2) and (3). The curvature d_/ds is not obtained

directly. Along blade surfaces, dfl/ds is determined by the blade shape.

Within the passage, it can be expressed as a function of the first and second

partial derivatives of the stream function (see appendix). Finally, _V/_x is

approximately proportional to the weight flow and can be calculated by nu-

merical differentiation. Therefore, at the full weight flow, _V/_x is ob-

tained by increasing _V/ax in direct proportion to the increase in weight

flow.

For the case where there is locally supersonic flow, equation (1) is no

longer elliptic in the entire region, but is hyperbolic in the region of super-

sonic flow. (This is discussed in chapter 14 and appendix A of ref. 5. ) With

a mixed type problem like this, an analytical solution to equation (1) probably

does not exist, as discussed in reference 8. This means that there is prob-

ably a shock loss. Equation (1) cannot be satisfied at the shock if there is a

shock loss. However, the shock loss may be so small as to be negligible in

a numerical solution. In this case, looking for a numerical solution to equa-

tion (1) can be justified.

At first one may think that equation (1) could be solved by a finite-

difference method even when there is locally supersonic flow. There are,

however, difficulties with this approach. The difficulty has to do with the

fact that there are two velocities, one subsonic and one supersonic, which

will give the same value for the weight flow parameter pV. If a stream-

function solution is obtained, the stream-function derivatives can be calcu-

lated to obtain values of pV using equations (2) and (3). However, if there

is locally supersonic flow, there is no easy way of telling which points should

use the subsonic velocity and which points should use the supersonic velocity.

This is further complicated by the fact that equation (1) is nonlinear and re-

quires iteration to obtain the coefficients involving the density p. In the

initial iteration, the predicted values of pV near the supersonic region

usually turn out to be too large, so that no velocity V can be found to corre-

spond to the predicted value of pV. Because of these difficulties, an alter-

native method was developed.

Transonic Solution

For well-guided flow, the velocity-gradient method works very well.

Because this method is not very well known, the basic idea is first explained.
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This method of analysis is sometimes called a stream-filament method, be-

cause the velocity-gradient equation normally involves the streamline (or

stream filament) curvature.

Example of velocity-gradient method. - The idea of a velocity-gradient

method can be demonstrated by considering a simple case. Suppose there is

two-dimensional flow through a narrow passage, as shown in figure 3. As-

sume the height of the passage to be b and the width d. If the weight flow w

is known, the velocity can be calculated approximately from continuity by

v- w (4)
pbd

For compressible flow, iteration may be required since p depends on V.

However, there is a variation in velocity across the width of the passage, so

that the velocity V obtained by equation (4) is not correct at every point

across the width. And, in turbomachinery, it is this velocity difference that

is of interest. The velocity difference can be determined by balancing cen-

trifugal force against the pressure gradient.

For a small volume of fluid moving along a curved path with radius of

curvature r, the centrifugal force is equal to its mass times the centrifugal

acceleration. In polar coordinates, then (assuming a unit height normal to

the x-y plane)

Mass =p dr rde

V 2
Centrifugal acceleration =

r

The centrifugal force must be balanced by the pressure force in the direction

normal to the direction of motion:

Pressure force =dp dr r dO
dr

Since the pressure force is equal to the centrifugal force,

m_ V2dp _ p __ (5)
dr r
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With the assumption of steady, nonviscous, and irrotational flow, the

pressure gradient is directly related to the velocity gradient by

dP+vdV= 0 (6)

P

Eliminating dp between equations (5) and (6) results in

dV_ V (7)
dr r

This is the velocity-gradient equation for this example.

Note that equation (7) could be obtained directly by assuming a free vor-

tex; that is, rV = constant. However, this derivation illustrates the principle

that a velocity-gradient equation can always be derived from the force equation.

Equation (7) can be integrated to obtain

V R1

V 1 r

(8)

where V 1 is the velocity at the wall with radius R 1. The value of V 1 can

be determined by satisfying continuity:

w = fpV dA (9)

Substituting equation (8) in (9) results in

f R2 dr

w-- JR PVlRlb--r (10)
1

Equation (10) gives a relation between V 1 and w. This relation is

known if p is known as a function of r. Now it is assumed that the fluid is

a perfect gas (constant Cp) and that the flow is isentropic. Then,

(11)
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where

This value of p

flow w:

V 2
T' = T + _ (12)

2Cp

Combining equations (8), (11), and (12) gives

2 2 \1/(_-1)
R1V-----fl1

p = p' 2r2Cp T'/-- (13)

can be used in equation (10) to calculate the weight

_ 2 2 \I/(},-

R2 -- 1)

w = p 'V1Rlb 2R1V----flr2cpT ,--1/ drr (14 )

R 1

The integral in this equation can be readily evaluated numerically for any

given value of V 1. Therefore, w can be plotted as a function of V 1. For

an example, let the constants in equation (14) have the following values:

Cp = 1000 J/(kg)(K)

7_1.4

p' = 1 kg/meter 3

T' = 1000 K

b = 1 meter

R 1 = 1 meter

R2 = 2 meters

For this example, equation (14) becomes
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V2 dr
w = V 1 -- --

2×106 r r

(15)

The values of w for given values of V 1 were calculated and plotted in fig-

ure 4. The maximum value of V 1 (corresponding to a static temperature of

absolute zero) is 1414 meters per second. The maximum (choking) weight

flow is 349 kilograms per second with V 1 = 805 meters per second. The ve-

locity distribution at choking weight flow is plotted in figure 5. While V 1

is supersonic, the velocity on the other wall is subsonic. From figure 4 it

can be seen that, for a weight flow slightly less than choking, there are two

solutions for V 1. For example, suppose that w = 325 kilograms per second.

Then V 1 = 610 and V 1 = 1010 meters per second will both give the desired

weight flows. The velocity distribution for these two solutions is plotted in

figure 5. Both solutions have both subsonic and supersonic velocities, so to

distinguish between the two solutions one is called the "subsonic" solution,

and the other the "supersonic" solution. The "subsonic" solution is charac-

terized by the fact that the velocity distribution curve is always below the

choking velocity; the "supersonic" velocity is always greater than the choking

velocity.

The "subsonic" solution would be used if the flow is subsonic upstream,

and the passage is not choked. If the passage is choked, either solution is

possible downstream of the throat. Whether the "subsonic" or the "super-

sonic" solution, or neither (with a strong shock) is correct would depend on

the downstream static pressure, similar to a converging-diverging nozzle.

The examples that have been analyzed so far have always used the "subsonic"

solution.

Velocity gradient equation for a general two-dimensional passage. - The

ideas just discussed can be applied to a general two-dimensional passage.

First an equation is presented for the velocity gradient in the y-direction in the

x-y plane. Then it will be apparent what information is needed from a sub-

sonic solution. And it will be shown how this information can be calculated.

The velocity gradient in the y-direction is given by

_V _ V dE + tan _ __VV

_y cos _ ds _x
(16)
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The curvature dfl/ds may be calculated by either

d__fifi= cos3fi d2y

ds dx 2

(on the blade surface)

or

d___= cos _ sin2_ ....

ds u x u 2 Uy/

(at interior points)

(17)

(18)

Equations (16) to (18) are derived in the appendix from the force equation.

The quantitues in equation (16) are known if a solution to equation (1) is known.

The transonic solution, of course, is not known. But, these quantities, that

is, /3, d_/ds (streamline curvature), and _V/_x may be estimated fairly ac-

curately from a solution at a reduced weight flow with completely subsonic

velocities. The streamline positions will shift with the increase to the full

weight flow, but _ and d_/ds will change only slightly, depending on how

well guided the flow is. For incompressible flow, _V/_x is proportional to

the weight flow. For compressible flow, _V/_x will not be strictly propor-

tional to the weight flow. However, for many cases it is sufficiently accurate

to assume that _V/ax is proportional to the weight flow. Then, at the full

weight flow, _V/_x is obtained by increasing _V/_x in direct proportion to

the increase in weight flow. And if fi is small, the value of _V/_x is not

important in equation (16).

With reasonable estimates for /3, d_/ds, and _V/_x, equation (16) can

be solved numerically along a vertical line. As discussed previously, veloc-

ity V 1 on the lower boundary is determined by continuity. It is required
that

fyl y2 pV cos /310dy = w (19)

where Yl is the value of y at the lower boundary and Y2 is the value of y

at the upper boundary. The technique for satisfying equation (19) is similar

to that already discussed for a curved passage. Equation (16) is solved for

some estimated initial value of V 1 on the lower boundary, using a simplified
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Runge-Kutta method for numerical integration (ref. 9, p. 235). This gives

values of V to use in equation (19). Then the value of the integral can be

calculated numerically to obtain w for the given value of V 1. This can be

done for a number of values of V 1 to obtain w as a function of V1, similar

to that shown in figure 4. Normally there will be two values of V 1 which

will result in the correct weight flow in equation (19), corresponding to the

"subsonic" and "supersonic" solutions. Usually the "subsonic" solution is

chosen. This value of V 1 used with equation (16) gives the velocity distribu-

tion along the entire vertical line.

This procedure can be repeated along a large number of vertical lines to

obtain the velocity distribution for the entire region, including both blade sur-

faces. Since a finite-difference mesh is established for the subsonic solution,

it is convenient to use the same mesh points for the transonic velocity-

gradient solution. The velocity gradient is then solved along each vertical

line of mesh points.

NUMERICAL EXAMPLE

This method has been programmed to analyze a general turbomachine

blade. The program, called TSONIC, is given in reference 3. TSONIC ob-

tains the "subsonic" solution of the velocity-gradient equation. An example

is given here of the results obtained with the program.

This example is a stator mean blade section (fig. 6) for a turbine built at

the Lewis Research Center (ref. 6). Satisfactory results were obtained by

using the TSONIC program. The stream-function solution was obtained first

with 80 percent of the desired weight flow. Then the velocity-gradient method

was used to obtain the velocities at the desired weight flow.

The blade surface velocities calculated by the program are plotted against

blade surface length in figure 7. Also shown in figure 7 are experimental data

obtained from the investigation described in reference 6. These are calcu-

lated from the pressure ratios plotted in figure 12 of reference 6. Most of the

velocities are in close agreement.
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CONCLUDING REMARKS

A method has been developed to obtain a transonic flow solution in a par-

tially guided passage. This method is based on extending a strictly subsonic

stream-function solution to the case where there is locally supersonic flow.

This extension involves the use of a velocity-gradient equation which must be

satisfied together with continuity.

The idea of combining the stream-function and velocity-gradient solutions

is not necessarily limited to guided passages. For example, suppose it was

desired to calculate transonic velocities over the surface of a two-dimensional

airfoil immersed in a subsonic free stream. The velocity-gradient and curva-

ture equations (16) to (18) would apply. And /3, d_/ds, and _V/Ox could be

obtained from a subsonic solution. However, the continuity equation (19),

would be of no help. The condition now is that

lim V = V_o (20)
y_oo

where V¢o is the free stream velocity. Practically, equation (16) would have

to be solved for several values of velocity V 1 on the surface. For each

value of V1, equation (16) would be solved for increasing y until V reached

an asymptotic value. When the asymptotic value for V is equal to V_o , equa-

tion (20) has been satisfied, and the corresponding solution for equation (16) is

the correct one.
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APPENDIX - DERIVATION OF VELOCITY- GRADIENT EQUATION

Euler's force equation for a nonviscous fluid is

dV 1 vp
dt p

where the differentiation is with respect to a moving particle.

of this equation is

(A1)

The y-component

dVy_ 1 ap (A2)

dt p 3y

With the assumption of steady, nonviscous, and irrotational flow,

dP+vdV= 0 (A3)
P

This holds throughout the flow field, not just along streamlines; therefore,

3____p=-v a__vv
p 3y 3y

Combining equations (A2) and (A4) results in

3V_ 1 dVy

3y V dt

The following relations (see fig. 8) are useful in the calculations:

(A4)

(A5)

Vx = V cos /3 (A6)

Vy = V sin/3 (AT)

dx
-- = v x (AS)
dt

d__yy= Vy (A9)
dt
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d.___s= V (AIO)
dt

d._.fl__= V d__.fl_ (A11)
dt ds

dV _ Vx a___V+ Vy _VV (A12)
dt ax ay

The indicated differentiation of the right side of equation (AS) can be per-

formed, and then the preceding relations may be used. Then the solution for

aV/ay (which appears on both sides of the equation) is obtained:

_V _ V d/3

ay cos /3 ds
+ tan _ aV (A13)

ax

It is desired to calculate the curvature d/3/ds either on a blade surface

or from the stream-function solution. Along a streamline,

tan /3 = d y (A14)
dx

and

cos/3 =dx (A15)
ds

Now differentiate equation (A14) and use equation (A15) to obtain

(A16)

Along a surface, d2y/dx 2 can be calculated when y is given as an

analytical function of x. However, in the passage, d2y/dx 2 is given in-

directly by the stream function. Hence, an expression is needed for d2y/dx 2

in terms of the partial derivatives of the stream function.

Since tan fl = Vy/Vx, equations (2) and (3) can be used to obtain
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U X
tan

U
Y

Using equation (A14) results in

dy _ Ux

dx Uy

Now equation (AI8) can be differentiated to obtain

dx 2 _x

+
a [dy_ dy _ 2UyUxUxy - u2u - u2un_ yxx x yy

Uy

Using equation (AI7) in equation (AI9) results in

d2y _ tan 2 _ Uxy _ UyUxx

_ Ux -r
Ux Uy/

(AZT)

(A18)

(AI9)

(A20)

Finally, substitutingequation (A20) into equation (AI6)yields

cos /3sin2__ Ux----_y - UyUxx - Uyy_

d6

Ux o:,,1
The velocity-gradient equation is equation (A13), where

fated by equation (A16) along the surface and by equation (A21) at interior

points.

(A21)

d/3/ds is calcu-
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DISCUSSION

PIERRE G. SCHWAAR, AVCO/Lycoming Division: I have been working on the

same problem for some time, and there are many questions which I would like to

ask. I shall restrict myself to two.

First, you have shown a solution which is only slightly transonic, with a

maximum suction side Mach number of 1.05 approximately. Under these condi-

tions, the channel certainly is not choked. Is this the highest Mach level you

have obtained with your method?

KATSANIS: I believe you could go a little higher than 1.05. I don_t

have any experimental comparisons for any higher Mach numbers. I would expect

it to get up to 1.2 or 1.4. It also depends on how large the region is. One

of the basic assumptions is that the shocks are negligible, so this would

determine partially whether a satisfactory solution could be obtained.

SCHWAAR: I am specifically talking about a turbine rotor cascade similar

to yours, but with a higher turning angle, where I have obtained a maximum

suction side Math number of 1.18, which corresponds to choked cascade flow
conditions.

The second question is: How do you determine the radius of curvature of

the streamlines? Do you make use of spline fits?

KATSANIS: The streamlines are not actually laid out, but I get the
radius of curvature in terms of first and second derivatives of the stream

function, which is calculated using a finite difference approximation. This

is included in the written version of the paper.

SCHWAAR: This does not involve a spline fit, then?

KATSANIS: Not for calculating the curvature of the streamline. I use

this for the blade surface definition, but not for this calculated first and

second derivatives of the stream function.

SCHWAAR: If I understand correctly, you first obtain a subsonic solution

and streamline pattern, and then use that streamline geometry without modifi-

cation to get a transonic solution. My contention is that the streamline con-

figuration changes substantially in the supersonic domain, and that a solution

according to your method, for transonic conditions with suction side Mach num-

ber larger than say, I.i, would not represent a good approximation. It is

necessary to carry out the streamline analysis in the transonic domain in
order to obtain a valid solution.

KATSANIS: All I can say is I have worked with velocity gradient

equations more generally, and I have found this approach seems to be better.

For example, when you have very low solidity, the velocity gradient method

just doesn't seem to be very satisfactory.
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MAURICE S. CAHN, Northrop Corp.: I'd like to make a general comment on

the network calculation doctrine. It looks like the results in this paper were

very good; however, the point I want to make is one which has to do with the

theme set at this meeting.

The point I'd like to make is that computers don't stay awake at night and

worry about their job. In a lot of papers I have seen, people have seemed to

ignore this fact and to have taken advantage of the computer's tremendous

capability. They quit worrying about their jobs and assume computers are going

to solve all the problems. I particularly make this point for the problem of

transonic flow. I think there is a solution to this problem that can use com-

plex function analysis by making a simple transformation to get an equivalent

incompressible flow. We have done this at Northrop, and have solved the prob-

lem for external flow around an airfoil. The same concept, I think, could be

applied to this problem.

KATSANIS: This is applicable even to transonic flow?

CAHN: Right. Now, if you look at the basic equation system you are

trying to satisfy, you have a network of _ and _ lines which is an orthogonal

network that satisfies a pretty simple equation: d_/ds, which is along the

streamline, is equal to i/p(d_/dn). It seems we have solved this problem in

a simple manner. I will have to admit we have used a computer for the problem.

But on the large computers it takes about I0 seconds.

KATSANIS: I'll have to obtain more information about your method.

CAHN: We welcome anyone to take a look at what we are doing. I think it

is an exact solution to compressible isotropic flow. But a computer is not

going to worry about whether this is an exact method or not, and I would wel-

come people who want to stay awake at night to talk to us and give further

understanding to our approach.

KATSANIS: Well, I'd like to talk to you.

CAHN: Well, we welcome it. Anyway, my comment is that using the

computer as a crowbar is going a little too far. A lot of solutions can be

obtained with computers in a more efficient way if we look at the basic equa-

tions and think of more elegant ways to solve them.

STEPHEN STARCH, Boeing Co., Wichita: First of all, I would like to ask

you what are the criteria for negligible shock? How would you know when you

are dealing with this?

Second, how do you reconcile your comment that you must have a well-

guided passage with your feeling that this method could be used for wings and

airplanes?

KATSANIS: The idea of the method is that it is not limited to a well-

guided passage. The velocity gradient method must be used in a well-guided

passage, but by obtaining additional information from a subsonic solution_

then you can extend this to a case where you don't have a well_guided passage,
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This hasn't been actually tried out for a wing, so I don't know how well

it is going to work, but it seems to me you should be able to get some
results.

Then the question about the shock strength, well, if you have such a

weak shock that it couldn't be picked up with a finite difference, then for

all practical purposes it's going to be an exact solution. There's not much

more to say.

LARS E. ERICSSON, Lockheed Missiles and Space Co.: I think a very good

criterion for a negligible shock would be one that doesn't cause any flow

separation in your duct.
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PREDICTION OF HEAT-TRANSFER CHARACTERISTICS FOR

EJECTOR EXHAUST NOZZLES

By Francis C. Chenoweth and Arthur Lieberman

Lewis Research Center

SUMMARY

A method is proposed for predicting the surface temperatures of the

shroud of an ejector exhaust nozzle at afterburning conditions. These surface

temperatures were obtained by applying a heat-balance equation employing ra-

diation and convection heat transfer of the shroud with the jet and ambient sur-

roundings. Conventional methods were used to predict all terms except the

convective heat transfer between the film and the nozzle. This term was eval-

uated using the Hatch and Papell film-cooling correlation to predict an adia-

batic wall temperature which was used as the driving temperature for heat

transfer between the film and the wall.

Results from this analytical procedure are compared with experimental

data obtained for the shroud of a cylindrical ejector nozzle tested with a

nacelle-mounted afterburning turbojet engine in an altitude facility.

The analytical method yielded good results for cases of separated, im-

pingement and smoothly attached flow conditions if the convective heat-transfer

coefficient was calculated based on secondary-flow conditions rather than the

more conventional primary-flow conditions. Maximum variation between ex-

perimental and predicted temperatures was 200 ° R (111 K).

INTRODUCTION

Many current aircraft jet propulsion systems make use of an ejector to

provide a cooling film of air over the engine tallpipe. Thus film cooling of

the ejector shroud is obtained by the secondary air providing an insulating

layer of cool air between the hot gas jet and the shroud. To evaluate film

cooling, several experimental investigations (refs. 1 to 6), have been made

Precedingpageblank
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of film cooling an insulated surface. There are, however, few reported inves-

tigations of applying this work to an environment where hot gas radiation and

heat transfer to ambient conditions must also be evaluated to determine a wall

temperature.

The method of predicting wall temperatures in a radiation and uninsulated

environment has been investigated herein. This method utilizes a wall heat

balance which includes radiant and convective heat transfer with the primary

and secondary flows and the ambient environment. Conventional methods are

used for predicting all the terms but the forced convection between the shroud

and the internal flow. To evaluate this forced convection term, the Hatch and

Papell film-cooling correlation (ref. 1) is used in combination with an esti-

mated heat- transfer coefficient.

Results of the analytical method are compared with experimental data

which were obtained using a nacelle-mounted afterburning turboj et engine with

a cylindrical ejector nozzle in an altitude test facility. The internal thrust,

secondary flow pumping characteristics, secondary flow total-pressure drop

and temperature-rise characteristics through the nacelle are reported in ref-

erence 7. For the present comparisons, the engine was operated at the maxi-

mum afterburning setting providing an ejector secondary to primary diameter

ratio of about 1.28. The maximum exhaust gas temperature was 3500 ° R

(1940 K). The corrected secondary weight flow ratio was varied from approx-

imately 0.03 to 0.09 over a range of exhaust nozzle pressure ratios from 2.0

to 6.3.

APPARATUS AND PROCEDURE

Details of the altitude facility, research hardware, installation and in-

strumentation are presented in reference 7. A schematic of a typical ejector

is shown in figure 1. The experimental data included in the report is from

ejector 4, reference 7. Some of the pertinent dimensional characteristics

are as follows: the calibrated primary areas, ApRI, averaged 181 square

inches (1160 cm2), the external shroud diameter, DSH , was 19.6 inches

(49.6 cm), and the length of the cylindrical portion of the ejector downstream

of the primary nozzle was 24.8 inches (63.0 cm). The ejector was construc-

ted of Inconel 600 having a nominal wall thickness of 0. 063 inch (0.16 cm).
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The nozzle pressure ratio was obtained by keeping the primary jet total

pressure constant and varying the ambient pressure.

SYMBOLS

A area

Cp specific heat at constant pressure

D diameter

f radiation configuration factor

Gr Grashoff number

h heat-transfer coefficient

k thermal conductivity

M Mach number

P total pressure

p static pressure

Pr Prandtl number

Q heat rate per unit area

R gas constant

Re Reynolds number

S slot width

T total temperature

t static temperature

V velocity

w weight flow

x distance

thermal diffusivity

ratio of specific heats

a Stefen-Boltzman constant
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T temperature ratio TSEc/TpR I

w weight flow ratio WSEC/WpR I

Subscripts:

AMB ambient

BL length of boundary-layer growth

C convection

D diameter

EX exit

f film

PRI primary

R radiation

r recovery

SEC secondary

STI shroud

W wall

x distance

ANALYSISPROCEDURE

The model is shown in figure 2. It is assumed that both the temperature

gradient across the wall and the axial heat-conduction rate in the wall are

negligible.

A heat balance on the wall element shown in figure 2 is:

QR, PRI = QC, SEC + QR, EX + QR,AMB + QC, AMB

The first subscript defines the mechanism of heat transfer, either radiation or

convection. All energy exchange is between the wall and another body. The

second subscript defines this body.

Rewriting the heat-balance equation in terms of a heat-transfer coeffi-
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cient and a temperature difference, we obtain:

hR, PRI(tpRI - TW) = hc, SEc(Tw - T_V)

+ (hR,EX + hR,AM B + hC,AMB)(T w - TAM B) (1)

The components of heat transfer between the surface and the ambient surround-

ings are combined to simplify the equations. The heat-transfer areas are as-

sumed to be equal for all components. Thus equation (1) is solved for the dia-

batic wall temperature TW. Evaluation of the heat-transfer coefficients and

gas temperatures utilized the experimental measurements of axial wall static-

pressure distribution, the total pressures, total temperatures, weight flow

rates and specific heat ratios of the primary and secondary streams, ambient

pressure and temperature, and the geometry of the ejector. Standard one-

dimensional flow equations and the static pressure distribution are combined

to determine the primary flow conditions and areas. The secondary flow is

assumed to fill the remaining area between the primary jet and the shroud

wall.

The radiation components of heat transfer are defined by:

Q= ._tja(T 4- T_)=h(T i - Tj)

Thus the effective heat-transfer coefficients hR, PRi, hR, EX , and hR, AMB,
are described by:

The emissivity of the internal and external surfaces was assumed to be

0.65 based on data obtained from reference 8. Configuration factors for ra-

diation out the exit were determined using data in reference 9. Hot-gas ra-

diation configuration factors and emissivities were obtained as outlined in

reference 10 for nearly black bodies.
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The heat-transfer coefficient between the wall and the surroundings,

hC,AMB, was obtained using the standard free-convection coefficient for a
horizontal cylinder (ref. 11).

hC,AMB = O. 53 k/GrDPr ) 1/4
D

Properties are obtained at the arithmetic mean between the surface tem-

perature and ambient temperature.

A similar method to that proposed in reference 12 was used to determine

the heat-transfer characteristics between the wall and the secondary stream.

This component of heat transfer was evaluated by assuming the potential for

heat transfer was the difference between the adiabatic recovery temperature

of the film and the wall temperature. The adiabatic recovery temperature,

Tw, was determined from the adiabatic wall film-cooling model proposed in

reference 1. The correlation is repeated below:

Tr_PRI- Tw l _DsHhfX 4_ _S%R!_0" 125 [1 (VpRI _1

- . -- -0.0 +0.4 tan -1 --

Tr, PRI- tSEC kWsEcCp, SEC / \aSEC/ \VsEc

The primary flow field was dete; ined by assuming one-dimensional

isentropic flow and assuming that the measured wall static pressures were

applicable across the ejector cross section. The local hot-gas recovery tem-

perature, Tr, PRI' was determined at distance x downstream of the throat
and was defined by

f Pr/3 PR> tTr, PR I L+ PRI\ 2 M2R tpRI

All secondary flow parameters (tSEC, WSEC, Cp, SEC' aSEC' and VSEC)

are taken at slot inlet conditions. VpR I represents the primary throat veloc-

ity. The local heat-transfer coefficient, hf, is defined by
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kf Re0.8pr0.3hf = 0.265
DSH

where the fluid properties are evaluated at an average of the local primary

static temperature and secondary slot inlet static temperature.

In reference 12 the heat-transfer coefficient between the wall and the film

was determined for the hot-gas stream. However, for the configuration in

reference 12 (a fiat plate with an uncooled section upstream of the injection

slot), the boundary-layer height was large compared to the injection slot

height. For the case of an ejector, the height of the secondary flow passage

at the primary exit is large compared to the primary stream boundary-layer

height and so use of a different heat-transfer coefficient might be expected.

Values of heat-transfer coefficient obtained from primary flow conditions pro-

vided more heat transfer than was observed in test. Coefficients based on the

secondary stream conditions (assuming that the secondary flow boundary layer

originated at the beginning of the cylindrical portion of the nozzle) were

smaller and provided good agreement with the observed data. These heat-

transfer coefficients were obtained using the standard flat-plate correlation

for turbulent flow (ref. 13) as follows:

hc, SEC = 0.0296 _ Re 0" 8prl/3
XBL

where the fluid properties are evaluated at an average of the adiabatic wall

temperature T_V and the wall temperature. The local velocity required for

the secondary stream Reynolds number, was determined by using the adia-

batic recovery temperature T_V and the area of the secondary stream as
shown below:

p 1/3

rSEC V_E C PSECASEC = 0+ VSEC - Tr, SEC
2Cp, SEC WsEcRsEc

Since the heat, transfer coefficients in equation (1) are either directly or in-

directly a function of the wall temperature, the Newton-Raphson method of

iteration was used for solution of the wall temperature value.
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RESULTS AND DISCUSSION

Comparisons of the experimental and predicted wall temperatures are

shown for three distinctly different flow conditions which were a function of

the nozzle pressure ratio, and secondary flow. Completely separated flow

was obtained at low nozzle pressure ratios. High pressure ratios yielded

smoothly attached flow at high corrected secondary weight-flow and

impinging-attached flow at low corrected secondary weight-flow.

A comparison of experimental and predicted wall temperatures for a

typical attached-flow condition is shown in figure 3(a}. The flow field for

this condition is shown in figure 1. The dashed line represents an approxi-

mate boundary between the secondary and primary streams. The mixing be-

tween the two streams then forms a wake which overlaps this boundary. The

decrease in primary flow area near the ejector exit is due to a separation and

recompression of the over-expanded primary stream. The separation shock

which occurs will move upstream as the nozzle pressure ratio decreases.

The scatter in experimental temperatures (fig. 3(a)), is due to nonuniform

flow distribution. As would be expected this effect diminishes with length

along the ejector. The dashed line is the adiabatic surface temperature cal-

culated using the Hatch-Papell semiempirical film-cooling correlation. The

solid line is the surface temperatures predicted using the analysis procedure

outlined herein.

As can be seen, good agreement between the experimental and predicted

data is obtained except near the ejector exit where the maximum error ob-

tained is approximately 200 ° R (111 K). This increase in predicted wall tem-

perature near the end of the ejector is due to the recompression of the over-

expanded primary flow. The flat portion of the adiabatic surface temperature

represents the distance downstream of the injection point the gas travels be-

fore the heat diffuses through the coolant stream to raise the adiabatic surface

temperature.

A distribution of the various components of heat transfer are shown in

figure 3(b). These curves represent an accumulative total of the heat-in and

heat-out of the wall. The heat-transfer term between the wall and the second-

ary stream, QC, SEC' changes from a heat-out term near the entrance of the

ejector to a heat-in term near the exit and appears to be responsible for the

high predicted wall temperature near the ejector exit.
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For most of the ejector it is evident that the radiation heat transfer be-

tween the primary stream and the surface is the most significant heating

term. The most significant cooling term changes from the secondary convec-

tion heat transfer term to the combined ambient radiation terms. The convec-

tion heat transfer between the surface and ambient, QC,_MB' is pratically
negligible over the entire length of the ejector since external flow was not

present for these test conditions. The solid angle between a point on the sur-

face and the opening in the exit of the ejector increases as x/DpR I in-
creases toward the exit. As a result of this the radiation from the surface to

ambient through the exit of the ejector becomes a significant cooling heat-

transfer component near the exit of the ejector.

The next flow condition to be considered is that of a separated primary.

The flow field is shown in figure 1. This flow condition is that of a low nozzle

pressure ratio, PPRI/PAMB = 2.0. The pressure ratio was reduced by in-

creasing backpressure at constant inlet conditions so that the pressure en-

vironment of the nozzle is higher than at larger pressure ratios. The primary

jet was separated from the shroud with the secondary flow adjusting at the exit

to the local ambient pressure. The secondary flow along the entire length of

the ejector is subsonic. The primary flow, in effect, is not significantly in-

fluenced by the shroud.

The predicted wall temperature, indicated by the solid line of figure 4(a),

is approximately 200 ° R (111 K) higher than the experimental data over the

length of the ejector. This is believed due to either a high estimate of radia-

tion heat transfer between the primary stream and the surface or a high pre-

diction of the adiabatic surface temperature by the film-cooling correlation.

Due to the higher primary static pressures, its radiation term is greater

than that for the attached flow condition by a factor of almost two over the

entire length of the ejector.

As expected from the steep increase of the predicted adiabatic surface

temperatures (fig. 4(a)) the convection between the surface and the secondary

stream increases rapidly (fig. 4(b)). As in the attached flow condition the

radiation term between the primary stream and the surface is the most sig-

nificant. However, the primary cause of the excessive temperature predic-

tion appears to be due to premature heating of the secondary stream.

The third flow condition to be discussed is that of impingement flow.

The flow field, shown in figure 1, indicates the primary flow stream impinges
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on the shroud a short distance downstream from the point of injection. A

shock is created at this point. The secondary flow is due strictly to entrain-

ment by the primary flow. The mixing of the secondary stream into the pri-

mary would be complete. This impingement flow condition is a combined ef-

fect of low corrected weight flow ratio and high nozzle pressure ratio.

A comparison of experimental and predicted temperature profiles is given

in figure 5(a). Even though the model for the film-cooling correlation is

somewhat different than an ejector flow system, it successfully predicts the

very high adiabatic surface temperatures, necessary for good agreement

with experiment. The maximum deviation from experiment is +100 ° R (+55 K).

Figure 5(b) shows a considerably different picture than for the previous

two flow conditions. The convection heat transfer between the secondary and

the surface is much more significant than the radiation between the primary

and the surface. Most of the heat load to the surface, therefore, comes from

mixing rather than radiation.

For this flow condition the cooling is provided entirely by the radiation

from the surface to ambient. It should be pointed out that if the ejector were

covered, such that QR, AMB is decreased, the surface temperature would
increase significantly.

CONCLUDING REMARKS

The measured wall temperatures of ejector nozzles for afterburning tur-

tojet engines were compared with results of predicted data. The predicted

data was obtained by combining an evaluation of the heat-transfer losses due

to radiation and convection with an existing film-cooling correlation.

The prediction yielded good results for the three flow conditions con-

sidered. This was particularly true for the case where the predominant heat

load was due to convection with the mixed secondary and primary streams

(impingement flow). For the attached and for the separated flow conditions

the primary heating component was radiation between the primary stream and

the ejector shroud surface. For these eases it is evident the film-cooling

correlation predicted somewhat excessive adiabatic surface temperature re-

suiting in predicted surface temperatures being about 200 ° R (111 K) higher

than were experimentally observed.
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To improve the analysis presented, minor adjustments may be obtained by

replacing the one-dimensional flow analysis with an axisymmetric method of

characteristics, and by improving the techniques for calculating the radiation

heat-transfer components. However, major improvements should be obtained

by better estimating the heat transfer between the surface and the film. These

adjustments would be made by replacing the present film-cooling correlation

for calculating the adiabatic wall temperature of the film, with a similar cor-

relation obtained for a geometry similar to an ejector. The heat-transfer

coefficient for this component is also critical and needs further study.
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SCHEMATIC OF EJECTOR EXHAUST NOZZLE
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WALL TEMPERATURE PROFILE-SEPARATED

cd_ = 0.072;PSECIPpR]:0.48;PPRIIPAMB :2.0

2700--

FLOW

2500

2300

2100

1900

EJECTORWALLTEMP, 1700
OR

-- /'_DIABATIC SURFACETEMP
/

/

/
/

// _ SURFACETEMP

// O EXPERIMENTALDATA

o1500
/ O O

1300

ll00 /_ B///
g00--O !

700.... _ I I .J
.4 .8 1.2 1.6

_ISTANCEDOWNSTREAM OF NOZZLE,xlDpRI

Figure 4(a)

HEAT

HEATINTO _ALL,
BTU/HR-FT2

DISTRIBUTION-SEPARATED FLOW

25 000F
20 0001_

15000 L!:i::;::._::;::

,_!;;i_?c.SEC;i!
10 000F ..............

HEAT OUT OF WALL,
BTUIHR-FT2

20000--

.,.._

lo00o ,_.QR, AMB;;_ ,,
5 000 ....... .-.",,.:-:_.:%'_,',;_-_:.,_._._.-._.!:_,_,-_, /

T , I ]
0 .4 .8 1.2 1.6

DISTANCEDOWNSTREAMOF NOZZLE xlDpRI

Figure 4(b)

637

-11 ]i il 1i 11 It _ l[ 11 11 ]i II ili it ]1 I "_ I



WALL

EJECTORWALLTEMP,
oR

TEMPERATURE PROFILE-IMPINGEMENT

_ o 0. 037; PSECIPPRI : O.29; PPRI IPAMB : 6. 2

2900--

2700--

2500 --

2300 --

FLOW

f
.,s

,,-**ADIABATIC SURFACETEMP
f

f
f

f
/

/
2100-- /

]900 -- / SURFACETEMP
I _..'d"_oI o

1700-- _// fO O O EXPERIMENTALDATA

_°°F-
t3oo 7

90ok'z"J I I I I
0 .4 .8 1.2 1.6

DISTANCE DOWNSTREAM OF NOZZLE,x/DpRI

Figure 5(a)

HEAT

HEATINTO WALL,
BTU/HR-FT2

HEAT OUT OF WALL,
BTUIHR-FT2

DISTRIBUTION-IMPINGEMENT FLOW

25 000 --

20_ - _:_!_::::_i:_:::i

,oooo _:i:i,i::i;i_)iSi:::!;ii_c:i;ici:ii.i;:!:
: QR,PR I_j_:_i`i_ii_:_i_:_:_i_:;i:?ii!!_;.:S_!_:!i_;i!_!i_!i?_:_{!!_!!_!!!i_::i

5 000 _..,_..!":i.:.:.{_ifZ!.!_i::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

o _.l_//'_l'////_l'_l'_///'J_i;///_i;>>_i_ l

20_ - QcAMB-',Z.._:,:::::::::_

10 000 _-i!::i{; ::QR, AMB!::;::.::

5ooo

.4 .8 1.2 1.6
ISTANCEDOWNSTREAM OF NOZZLE,xIDpRI

Figure 5(b)

638

-]1 IIiili 111t ltlllili_iIllllllll_.



A UNIFIED SYSTEM OF SUPERSONIC AERODYNAMIC ANALYSIS

By Harry W. Carlson and Roy V. Harris, Jr.

Langley Research Center

SUMMARY

The design and development of efficient aircraft is critically dependent on the

availability of rapid and accurate theoretical methods for aerodynamic analysis to supple-

ment wind-tunnel data so that aerodynamic factors can exert their proper influence early

and often in the configuration selection process. In this paper a discussion is presented

of the analytic methods developed at the Langley Research Center which provide not only

for the estimation of forces and moments on supersonic airplane configurations but which

also have certain design features for component shaping to minimize drag. The methods

are based on linear-theory numerical solutions which have been implemented by pro-

graining of high-speed digital computers. The methods are described and examples are

shown to indicate their applicability to aerodynamic estimation and optimization, to sta-

bility and control studies, and to sonic-boom predictions.

INTRODUCTION

The design and development of efficient aircraft are critically dependent on the

availability of rapid and accurate theoretical methods for aerodynamic analysis to supple-

ment wind-tunnel data so that aerodynamic factors can exert their proper influence early

and often in the configuration selection process. For conventional subsonic airplanes,

these requirements are satisfied by methods which consider the wing aspect ratio and

span-efficiency factor in evaluation of lift-induced drag and by methods based on exposed

surface areas and local skin-friction coefficients for the estimation of viscous drag. At

supersonic speeds, however, the problem becomes more complex because of a drag com-

ponent, not present at subsonic speeds, which is due to the longitudinal distribution of air-

plane volume and lift. This supersonic pressure drag, or wave drag, is responsible for the

large differences in airplane shape that may be observed by comparing typical supersonic

and subsonic airplanes. Efforts to keep the wave-drag contribution within acceptable

bounds have resulted in relatively thinner airplane components and in greatly reduced

wing span and aspect ratio in comparison with good subsonic designs. Thus, in the devel-

opment of analytic methods applicable at supersonic speeds, a considerable amount of

attention must be devoted to the treatment of wave drag - that associated with the lift

distribution, as well as that dependent on the volume.
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In this paper a discussion is presented of analytic methods developed at the Langley

Research Center which provide not only for the estimation of forces and moments on

supersonic airplane configurations but which also have certain design features for com-

ponent shaping to minimize drag. The methods are based on linear-theory numerical

solutions which have been implemented by programing of high-speed digital computers.

The discussion will begin with an examination of some basic theoretical approaches to

the evaluation of drag at supersonic speeds. Then a composite system of analysis that

combines selected features of each approach will be outlined. This system provides

predictions of drag characteristics of complete airplane configurations and certain design

information. Elements of the numerical solutions used to adapt the theory to digital com-

puter implementation are illustrated, and the resultant complex of computer programs is

described. A set of examples is shown to indicate the applicability of the methods to

aerodynamic estimation and optimization problems, to stability and control studies, and

to sonic-boom predictions. Finally, some brief comments are made relative to possible

future development of the system.

A B area of equivalent body

CD drag coefficient, Drag
qSw

C L lift coefficient, Lif...tt
qSw

C m

Cp

pitching-moment coefficient

pressure coefficient

D drag

SYMBOLS

1 model length

M Mach number

Ap incremental pressure

q dynamic pressure
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S

Sa

Sc

Sd

s_

U

U

x_r, 0

6 c

5 t

surface area

surface area of aircraft

surface area of cylinder

surface area of disk

surface area of wing

free-stream velocity

perturbation velocity

cylindrical coordinates

canard deflection

tail deflection

surface slope

Mach angle

p density

BASIC THEORETICAL APPROACHES

At the present time, airplane wave drag is evaluated almost exclusively by applica-

tion of the familiar linear theory of supersonic flow. More exact methods have not yet

been developed to the point where they are broad enough in scope to be applicable to com-

plete airplane configurations. Within the linear theory, there are two fundamental

approaches to drag evaluation. (See fig. 1.) In the more direct approach, which might

be termed the near-field method, pressures are evaluated at a sufficient number of con-

trol points on the airplane surface to assure that an integration of local panel forces will

yield lift and drag values representative of the complete airplane. The usual linear-

theory sources, sinks, doublets, and vortices are used to represent the airplane volume

and the lift-generated flow fields which determine the influence of one part of the airplane

on another. This near-field method in conjunction with a viscous, or skin-friction,
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analysis can account for all the major airplane aerodynamic forces. Advantages of this

approach are the consideration of the interaction between volume and lift effects, the

surface-loading information obtained, and the opportunity afforded to minimize drag due

to lift by the design of wing surfaces. The prime disadvantage of the method is its com-

plexity. Numerical solutions are rather cumbersome and even when implemented by the

most modern high-speed computers require relatively long running times. However,

remarkable progress in adapting the technique to nearly complete airplane configurations

has been accomplished. (See refs. 1, 2, 3, and papers no. 2 and 12 presented at this

symposium.)

An alternate approach which might be termed the far-field method is based on the

relationship between the forces on the airplane and the momentum transport through the

boundaries of a surface completely surrounding the airplane. For convenience, this sur-

face is assumed to be that of a cylinder whose axis passes through the airplane. When

a cylinder with a sufficiently large diameter is chosen, the total airplane drag is repre-

sented by two concentrations of the momentum transport. In the airplane wake, near the

center of the rear disk, is concentrated the momentum loss associated with the airplane

skin-friction drag and with the vortex drag due to the lateral distribution of lift. In the

vicinity of the Mach cone originating from the airplane nose is the momentum loss asso-

ciated with the airplane wave drag which results from the longitudinal distribution of air-

plane volume and lift. No way is known to evaluate the skin-friction_ or viscous_ drag

without consideration of airplane surface conditions; thus, the fur-field approach is not

applicable for this drag contribution. Surface conditions also must be considered in

obtaining knowledge of lift distribution required for vortex-drag evaluation, and again

the fur-field approach is inapplicable. However, for airplane wave drag which is so

critical to the development of a workable supersonic analysis technique, the fur-field

analysis provides, in a somewhat devious fashion, a remarkably simple analysis method

for this complex problem. This method, known as the supersonic area rule, was

advanced and developed by Hayes, Whitcomb, Jones, Lomax, and Ward (refs. 4 to 8).

Practical application of the fur-field analysis to the evaluation of wave drag is

based on the observation made by Hayes that on a control cylinder of infinitely large

diameter, the effect of an airplane-created disturbance is not altered by a translation of

the disturbance within a plane surface tangent to a Mach cone originating on the airplane

axis. Thus, at large distances for any given azimuthal location, the flow field created by

the airplane is indistinguishable from that of a particular body of revolution defined by

cross-sectionai areas of the airplane intercepted by Mach cutting planes. When this

equivalent-body concept is accepted, airplane wave-drag evaluation is reduced to evalua-

tion, by well-known methods, of the wave drag of a series of bodies of revolution, each

accounting for a specific but narrow range of azim,,thal angles.
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The influence of the lift distribution on wave drag may be introduced into the

equivalent-body theory by conversion of local forces to equivalent areas by use of a

method set forth by Hayes (ref. 4), but this first requires an independent near-field eval-

uation of lift distribution. Thus, it is more convenient to resort to lifting-surface theory

for the drag associated with lift - both the wave drag and the induced drag - and to

treat only the thickness, or zero-lift, wave drag by the far-field method. The prime

advantages of the equivalent-body wave-drag estimation system are that it is relatively

simple, that it is applicable to any airplane configuration, no matter how complex, and

that, as will be discussed later, provision can be made for direct optimization of

airplane-component shapes for drag minimization.

A COMPOSITE SYSTEM OF ANALYSIS

Application of elements of both the near-field and far-field approaches to a com-

posite analysis system for supersonic airplanes may be illustrated with the aid of the

lift-drag curve of figure 2. The two contributions to drag due to lift, the wave drag and

the vortex drag, are best handled simultaneously by the application of simplified near-

field approaches to a wing of zero thickness with relatively small departures from a

horizontal plane. Zero-lift wave drag due to the airplane volume may be found by the

application of far-field supersonic-area-rule techniques. The assumptions of zero

volume in the drag-due-to-lift analysis and of zero lift in the wave-drag analysis prevent

consideration of mutual interaction between volume and lift, a factor which appears to be

negligible for slender supersonic-transport configurations but which may be significant

for supersonic-dash vehicles. Selection of these methods does, however, preserve the

opportunities for design of a twisted and cambered wing surface for drag-due-to-lift

minimization by near-field means and for component shaping for wave-drag minimiza-

tion by far-field means. The only practical means of evaluating the skin-friction drag

is the conventional manner based on exposed surface panels and average skin-friction

coefficients determined by a representative local Reynolds number. Numerical tech-

niques for evaluation of all three drag contributions have been developed and have seen

extensive use in the national supersonic-transport program and in various military air-

craft development projects.

FEATURES OF NUMERICAL SOLUTIONS

Some of the key elements in the zero-lift wave-drag and drag-due-to-lift numerical

solutions are illustrated in figure 3. The complex geometrical calculations required to

generate the equivalent-body-area developments for complete and rather arbitrarily

shaped airplane configurations have been programed. The frontal projection of an
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airplane section intercepted by a supersonic-area-rule cutting plane for a given super-

sonic Mach number and for a typical azimuth angle is shown at the upper left of figure 3.

Also shown in this figure is a curve showing the distribution of frontal-projection cross-

sectional area defining, for a typical azimuth angle, one of the many required equivalent

bodies. Indispensable elements of the program-drag solution for the equivalent bodies

are the minimum-drag fairing between successive points which assures convergent solu-

tions and the techniques for drag evaluation provided by the work of Eminton (ref. 9) and

Eminton and Lord (ref. 10). The airplane wave drag is taken to be the sum of the sector

drags of a series of bodies of revolution, each of which represents a sector of the flow

field (a specified range of azimuth angles). When the azimuthal spacing is uniform, as

in this example, the airplane drag becomes simply the average drag of the series of

equivalent bodies. In practice, many more points are used than are shown in this simple

illustration.

For the evaluation of drag due to lift, the wing is divided into a large number of

rectangular elements, and the influence of one element on another is found by the appli-

cation of linear theory vortex-flow equations. Local element lifting forces are summed

to find overall forces and moments. The drag due to lift for a range of lift coefficients

is found by combining solutions for the warped surface and a flat surface of the same

planform and by accounting for the effects of the mutual interaction of loadings and sur-

faces. Numerical solutions of the theory and computer-program inplementation allow

consideration of arbitrary wing planforms which may have arbitrarily twisted and cam-

bered surfaces. A planform which includes the fuselage and a mean camber surface

defined by both the wing and fuselage has been found to provide improved accuracy for

most airplane configurations. In addition to the program which provides for the estima-

tion of aerodynamic characteristics of a given wing, a separate program is used in the

design of minimum-drag wing surfaces by means of an optimum combination of specified

loadings.

COMPLEX OF COMPUTER PROGRAMS

A chart depicting a complex of computer programs for aerodynamic _nalysis

developed at the Langley Research Center is presented in figure 4. The task of aerody-

namic analysis of an airplane configuration begins with the preparation of numerical-

model data for machine program input. This process is aided by an electromechanical

device, called a digitizer, which is useful in the direct conversion of model drawing

geometry to a set of numerical coordinates. Each of the drag-evaluation programs

makes use of a geometry section which provides fairings of input data, converts data to

program units, and, in the wave-drag program, computes the equivalent-body areas.
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Geometryprograms also provide tapes for use in the preparation of machine-made

drawings of the numerical model and for use in controlling machine-tool operations in

the construction of model components. Three of the main aerodynamic programs,

shown near the center of the figure, have been discussed. The fourth program computes

an additional drag term due to the interference produced by nacelles or stores in the

vicinity of a wing surface. Results from these programs when assembled provide a

theoretical estimate of the aerodynamic characteristics of the configuration which may

be used in evaluation of specific aircraft proposals or in selection among candidate con-

figurations of a design study.

It is important to note the program optimization or design features. The wing pro-

gram for an optimum camber-surface definition has already been mentioned. In addition,

a version of the wave-drag program now has provision for the selection of a minimum-

drag fuselage shape subject to appropriate restraints, such as specified minimum diam-

eters. The interference program has a provision for designing a reflex wing surface in

the vicinity of the nacelle for drag minimization or for moment control.

A sonic-boom program to compute near-field pressure signatures (the general

case) is also a part of the computer-program complex. The aerodynamic analysis sys-

tems, as herein described, are well suited to sonic-boom analysis; and, in fact, three of

the aerodynamic programs provide the input area and lift distributions required for

sonic-boom solutions.

The form of the mathematical models used to represent the airplane may be seen

in the drawings of figure 5. These machine-made drawings, generated by the geometric

parts of the aerodynamic programs, illustrate the detail of the program solutions. They

are quite useful in assessing the adequacy of the airplane representation and checking

for obivous errors in the input data.

More complete descriptions of the computational techniques employed in the key

programs and further discussions of program usage for the estimation and optimization

of supersonic aircraft aerodynamic performance are given in references 11 to 20. The

Computer Software Management and Information Center established through the

Technology Utilization Office of the National Aeronautics and Space Administration can

supply documentation, listings, and tapes or card decks for some of the more basic pro-

grams. Information on availability and costs may be obtained from

COSMIC

Computer Center

University of Georgia

Athens, Georgia 30601
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APPLICABILITY AND LIMITATIONS

The applicability of the computer techniques has been demonstrated in numerous

correlations of experiment and theory, such as that shown in figure 6. The theoretical

lift-drag curves for a supersonic-transport configuration and for a fighter configuration

employ shading to show the relative contribution of the three major drag components.

The skin-friction component corresponds to the wind-tunnel test Reynolds numbers and,

thus, indicates a larger relative contribution to the total drag than that for a full-scale

airplane. For the more slender supersonic-transport configuration, there is an excellent

agreement between experimental data and theoretical results. Similar agreement has

been observed for slender configurations at Mach numbers as high as 3. As is often

observed with figher aircraft configurations, particularly those with little symmetry

about a horizontal plane, the prediction is somewhat less accurate. Other comparisons

of the fighter aircraft data with theoretical results indicate that the discrepancy is due

more to the vertical displacement of airplane components than to component thicknesses.

This observation leads to the suggestion that improved accuracy may result from a con-

sideration of mutual interaction between lift and volume effects in refinement of the cal-

culative procedures. Processing time on a Control Data 6600 computer system for the

programs employed totals about 6 minutes for a typical configuration at a given Mach

number.

Application of the aerodynamic design features of the computing programs may be

illustrated with the aid of figure 7. Theoretical and experimental data are shown for an

optimized complete supersonic-transport configuration employing fuselage shaping,

nacelle placement, wing design, and reflex treatment as specified by computer solutions.

The effectiveness of the design procedures is demonstrated by the fact that this optimized

configuration has the highest aerodynamic efficiency for a supersonic cruise vehicle yet

attained (a value of about 9 for the full-scale airplane). For the estimated cruise-lift

coefficient, it is seen that the complete configuration has no more drag than the corre-

sponding flat wing-body configuration without nacelles or fins. Furthermore, the wing

twist and camber allows the complete configuration to be trimmed with little or no drag

penalty in contrast to a large penalty which would be incurred with the flat wing-body

configuration.

A more recent addition to the assemblage of programs is a version of the wing

program which, as illustrated in figure 8, allows for the calculation of lift, drag, and

moments produced by wing-taft or wing-canard combinations. This capability which is

achieved by introducing a zero-lift membrane between the two lifting surfaces is proving

to be useful in the analysis of stability and control and trim-drag aspects of aerodynamic

performance. In the drag and moment data shown for both a horizontal-tail and a canard

646

II II lll II It II II lilt li Ii li li li li II I l!



configuration,the theory displays a quite reasonable agreement with the experimental

data. The configurations shown here have relativelylittlevertical displacement between

the two liftingsurfaces. In configurations where the displacement becomes appreciable,

the abilityof the program to provide valid results is somewhat impaired; thus, further

study and development work is required.

The remaining member of the family of computer programs which provides a

means of calculatingthe pressure fieldsurrounding an airplane in supersonic flight,is

used primarily for sonic-boom predictions. The flow-fieldanalysis is directly related

to the liftand drag analysis previously discussed, and in fact,the equivalent-body-area

distributionsobtained in the aerodynamic-performance programs provide the firststeps

in the sonic-boom analysis. With the area and liftdistributionsas input data, the sonic

boom program implements the Whitham theory (ref.21) to provide for the calculationof

complete pressure signatures, including shock locationand strength. An example of

pressure-signature calculationsand a comparison with wind-tunnel experimental data is

shown in figure 9. Itis clear that,at least for the relativelyslender supersonic-

transport configuration,the theory is in good agreement with the experimental data in

all sectors of the flow field,even for a relativelysmall radius of 21 body lengths. Note
m

that although negative areas are shown in the equivalent-body representation for the flow

above the model, no difficultyis encountered in obtaining the theoreticalsignature. For

airplane sonic-boom predictions, ithas been the practice to modify the uniform-

atmosphere solution given by the program by use of atmospheric correction factors

derived from the work of Friedman, Kane, and Sigalla (ref.22). Now, with the develop-

ment of a method for computation of the complete signature in itspropagation through a

nonuniform atmosphere by Hayes, Haefeli, and Kulsrud (ref.23),the program can be

expected to serve as a source for the required airplane "F function" (ref.21).

POSSIBLE FUTURE DEVELOPMENT

The present utility of a complex of related computer programs for supersonic aero-

dynamic and sonic-boom analysis has been shown in the preceeding discussions. It

would now seem appropriate to discuss some steps that may be taken to make the system

more useful in application to a greater variety of supersonic aircraft configurations and

a greater variety of problem areas.

To make use of this system more convenient, plans call for an effort to provide for

more computer handling of interprogram steps and an effort to provide for program con-

solidation so that a single standardized set of numerical data will serve all the aerody-

namic programs. First steps toward this end are being made for a unified sonic-boom

program which will have the airplane geometry as an input and the pressure signature

as an output.
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In order to provide a more accurate representation of the aerodynamic character-

istics of certain categories of fighter airplanes, consideration has been given to the

inclusion of lift interference in wave-drag evaluations and thickness influence in lift

determination. A program has been developed to handle the lift-interference effect; but

it is believed that the thickness influence is equally important and that further efforts to

provide a means of estimating its effect on lift distributions are required.

It is sometimes difficult to realize that a method which has been so useful in the

analysis of twisted and cambered wings is based on a seemingly unrealistic assumption

that vertical displacements of lifting elements are small. Removal of that limitation

should provide for more accurate theoretical solutions. It is also clear that the Mach

line propagation paths assumed in the theories are not realistic, and accordingly, con-

sideration is being given to incorporation of the Whitham correction (ref. 21) in a wing

program.

Eventually, it is hoped that consideration of detached-flow phenomena and the wing-

leading-edge vortex flow fields can be included in theoretical treatment of complete air-

plane configurations. That development appears to be out of reach for the present, but

a semiempirical treatment may be of use in accounting for the primary influence of these

factors on the overall airplane performance.

CONCLUDING REMARKS

The analytic techniques for the estimation and optimization of airplane supersonic

aerodynamic characteristics discussed in this paper have been shown to be applicable

to speeds up to a Mach number of about 3 for configurations employing slender bodies

and thin moderately cambered wings. Thus, if a configuration meets the requirements

for efficient supersonic cruise (a necessity for supersonic transport designs), the

methods may be used with confidence. With configurations for which supersonic-cruise

efficiency is not a major concern (for example, supersonic dash vehicles), there may be

some question as to the complete applicability of methods based on linear theory.
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COMPUTER GRAPHICS
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APPLICATION OF PROGRAM DESIGN FEATURES
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DISCUSSION

GEORGE R. BARTE, JR., General Electric Co.: First, I would like to

compliment the speaker on an extremely interesting presentation, and

one that from a comparison of theoretical and experimental data appears, as

the speaker suggested, to be a very useful tool in high performance laboratory
work.

However, in the presentation there were a few points that bother me

because I didn't understand what the speaker meant. I get disturbed from time

to time when I hear people talk about conventional techniques, because I

frankly don't think there are very many conventional techniques. It seems

that most of the jobs I wind up doing are unconventional. So from that point

of view, I'd like to first find out what you meant by "conventional techniques"

in terms of skin friction analysis. What method do you use for skin friction?

CARLSON: Well, I would say that the Sommer and Short T' method with

the Karman-Schoenherr incompressible formula was used to find the skin friction

coefficients, and the rest of the system simply employs what might be called

strip theory, where the flat-plate skin friction coefficients are applied to
panels of the airplane, and the values of the skin friction coefficients are

dependent on local Reynolds numbers as defined by the length of these
panels.

BARTE: I understand that. Thank you.

Going on to another point, you mentioned that in the modeling for the

drag-due-to-lift computations you used essentially a mean camber distribution

for the entire configuration, and you further stated that the agreement of

the theory and the experiment was good. Yet when we refer to figure 6

and compare that to the tactical fighter versus the supersonic transport

configuration, we find a departure in the drag-due-to-lift that is more

pronounced for the fighter than for the SST.

CARLSON: Yes, this is such a complicated configuration that it is very

difficult to assess in just which of the drag components the errors would
lie.

Now, when I say that experimental data have shown that this mean camber

surface concept provides an improved prediction of moments, I'm talking about

data for other simplified configurations - simple wing-body shapes. For

example, one of the cases was a delta wing with a wedge below it, to create

an interference effect. We found that the analysis was improved by considera-

tion of the mean camber surface, and could account for the major part of the
interference lift.

BARTE: Would you perhaps suggest in terms of your summary comments that

part of the departure might be due to an exclusion of the thickness

distribution or relevant items?
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CARLSON: Yes. For the fighter configuration shown in figure 6, one of

the important features not considered is the influence of the thickness of the

fuselage which lies mainly below the wing plane, in altering the lift distri-

bution on the wing and, of course, influencing the drag-due-to-lift factors,

and we at present have no way of accounting for this. This is just one of

the items that are not considered.

BARTE: Finally, because I think I have outlived my usefulness as

interrogator here, I'd just like to comment in terms of the presentations

earlier this week. One of the questions that did not get an adequate answer

was the question of what difference does it really make in terms of overall

configuration performance to assess, let's say, skin friction at a greater

degree of precision than 5 or I0 percent? The configuration dependency shown

here (SST and Tactical Fighter in figure 6)indicates that the predictive

importance of skin-friction values is about half that for total drag at flight

conditions because the total drag values at some reasonable cruise lift coef-

ficient are about twice what the skin-friction component is. A further

observation is that the higher the lift-to-drag ratio and the higher the

altitude of flight, the more important it is to accurately assess the skin-

friction component.

LELAND M. NICOLAI, U.S. Air Force Academy: Considering a supersonic

interceptor, pulling a 3- or 4-g turn, would he be operating at an angle of

attack that is likely to viblate any of the assumptions inherent in your

program?

CARLSON: It violates just about everything. But from what information

we have seen, it is very surprising that the percentage errors in the matter

of drag for those high lift coefficient regions still remain quite small,

within l0 percent, say. It doesn't completely fall apart.

NICOLAI: Okay, a second question. I presume that you can determine

aerodynamic center locations. Can you also put in an estimate for a c.g.

location and determine trim drags, and perhaps find an optimum position for

c.g. that would minimize trim drag through a variety of Mach numbers?

CARLSON: There is quite a bit of that work done in the various groups

at Langley. This is an important consideration.

_NS W. GRELLMANN, Northrop Corp.: The comparison with experimental

data that you showed us was for high Mach numbers. How does your theory pre-

dict the wave drag at Mach numbers between, say, 1.2 and 2?

CARLSON: These techniques are based on supersonic linearized theory and,

of course, are not really applicable in the transonic range. Now, how far

down the transonic range you can apply them depends on the configuration.

Normally we can expect these techniques to work reasonably well down to about

from Mach 1.2 to 1.4. We don't expect them to cover the transonic range.

657

I



GRELLMANN: Have you actually predicted wave drag at those Mach numbers

and found good agreement?

CARLSON: For some configurations it is good down to Mach 1.4. For a

supersonic transport configuration, you can apply it down to about 1.2.

GRELLMANN: How about configurations with relatively low-sweep wings?

CARLSON: I can't give you any hard and fast numbers, but the Mach

numbers at which these systems would apply would be higher, in all probability,

for those cases. That's about all I can say, because it depends on the con-

figurations, and we yet haven't done a thorough study of applicability to a

large number of fighter configurations.

GRELLMANN: Well, there are several limitat_ns in the way the configura-

tions are represented in the supersonic area rule and one is the assumption

that the wing is transparent, that is, that pressures are transmitted right

through the wing.

CARLSON: That's right.

GRELLMANN: The other question I have is whether the equivalent body is

really a good representation. It's probably quite good for a highly swept

wing, but for a wing of less sweep, say 30 ° or 40 °, I have some questions as

to whether the equivalent body would really give you the same pressures, or

the same drag.

CARLSON: It is surprising, it will. The main test that we have is how

well we can correlate with measured data, and it seems to work out pretty well

for relatively low-sweep wings.
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POTENTIAL FLOW SOLUTIONS FOR INLETS

OF VTOL LIFT FANS AND ENGINES

by Norbert O. Stockman

Lewis Research Center | N.. G - 1379
SUMMARY

An axlsymmetric incompressible potential flow method of solution is

applied to the inflow problems associated with shallow VTOL inlets in static

and crossflow operation. The basic approach of the method is described, and

ways of applying it to compressible flow and to nonaxisymmetric inlets are

presented. Several comparisons with experiment are presented, including

cases of compressible flow and of unsymmetrical inlets, to demonstrate the

applicability of the method in predicting the flow for VTOL inlets in static or

crossflow operation.

INTRODUCTION

Several different types of propulsion systems have been proposed for

achieving vertical flight. Among the more promising are lift fans and lift

engines. For both types, since thrust for vertical lift-off is required, the

propulsion system should be as light and compact as possible. Minimum

engine volume is also desired to minimize drag if the lift propulsion system

is carried along in pods during normal cruise flight. In the case of a lift fan

installed in a wing, the inlet depth may be further restricted by the available

maximum thickness of the wing section.

One of the factors involved in achieving minimum weight and volume for

a lift fan or lift engine is the design of an efficient shallow inlet. A shallow

fan or engine inlet, however, presents two major aerodynamic problems:

(1) unfavorable velocity gradients on the bellmouth surface may lead to exces-

sive boundary-layer growth and separation_ and (2) large radial variations in

velocity across the passage may make the design of the fan or compressor
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more difficult or the operation less efficient. Such effects may appear when

a VTOL aircraft is operating in either the landing, takeoff, or hover mode,

for which the inlet is operating statically with no significant free-stream ve-

locity relative to the airplane (fig. 1, upper left). The satisfactory solution

to these problems will depend on reasonably accurate methods for estimating

the surface velocity distributions and passage velocity profiles induced by

various inlet configurations. -o

When the inlet is operating in a crossflow, that is, a free stream approx-

imately normal to the inlet axis (fig. 1, lower left), the two problems just

mentioned are aggravated and a further problem arises - that of circumferen-

tial distortion of the flow pattern at the rotor inlet or engine entrance planes.

This distortion consists of a deviation from axial symmetry of the flow angle

and velocity caused by the condition that the inlet is not deep enough for the

flow to straighten out or the velocity to become uniform. This distortion is

aggravated relative to the rotor, since the rotor is advancing into the flow on

one side and retreating on the other, as shown in figure 1 (lower right). The

changes in flow angle and velocity produce changes in the relative Mach num-

ber and the incidence angle at the fan or engine compressor. The rotor inci-

dence angle varies from negative to positive, as shown on figure 1 (upper

right). These changes from the design values could result in severe perform-

ance losses and blade vibration. Therefore, an analysis of the flow in inlets

under crossflow conditions is necessary at least to obtain a knowledge of the

severity of the distortion and to aid in controlling or eliminating it when nec-

essary.

This paper presents a theoretical potential flow method for the calculation

of flow in VTOL inlets in both static and crossflow operations. (An analysis of

flow in static inlets based on this method has been presented in ref. 1. ) First,

the essentials of the method are described. Then sample results, including

comparisons with experiments, are given to indicate the applicability of the

method.
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SYMBOLS

A,B,C combination coefficients,eq. (I)

Ai change in rotor incidence angle from design to transition

_o unitvector in axial direction

_90 unit vector in direction perpendicular to axis

Ps static pressure

Pt total pressure

q dynamic pressure

R radius from inlet axis

R H hub radius

R S shroud radius

S distance along profile of inlet surface

UT rotor tip speed

V velocity vector of combined solution

Vi velocity vectors of basic solution, where i = 1, 2, 3

Z axial coordinate

direction of free-stream velocity relative to inlet axis

0 circumferential coordinate

Subscripts:

a bulk conditions of inlet flow at control station

c average axial component at control station

free-stream conditions

METHOD OF SOLUTION

The method used to calculate the flow in VTOL inlets is based on the

Douglas incompressible potential flow computer program for axisymmetric
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bodies. Only the bodies are assumed to be axisymmetric; the flow itself need

not be. The details of the Douglas method are covered extensively in ref-

erences 2 to 4; the highlights will be outlined herein.

I. Bodies are represented by a distribution of sources and sinks of initially

unknown strengths.

2. An integral equation in the unknown source strength is derived from

the potential flow equations and boundary conditions.

3. At discrete points on the bodies, the integral equation is approximated

by a set of linear algebraic equations.

4. These equations are solved for the source strength by matrix methods.

5. Velocities are calculated on the surface and at other points of interest

in the flow field from the source distribution obtained in step 4.

The program is basically for closed bodies in a free stream, and the

method is exact for such cases. However, inlets are idealized for simplicity

in applying the method. The idealization of a VTOL inlet is shown in figure 2.

The real inlet may consist of a centerbody and a bellmouth installed in a body

such as a wing, pod, or fuselage. For the ideal inlet, the actual body (dashed

line in fig. 2) is replaced by a straight line extending from a point on the inlet

far out into the free stream. This point is usually chosen where the bellmouth

is tangent to the actual body. Also, the inlet duct is extended far downstream,

as shown in figure 3. This method of idealizing a VTOL inlet is based on the

procedure recommended for conventional inlets in reference 5.

Basic Solutions

The Douglas program is used to obtain three basic solutions for the ide-

alized inlet profile and certain free-stream conditions, as shown in figure 3.

The basic solutions are simple ones that provide a convenient basis for gen-

erating the combined solutions that are of physical interest. Basic solutions

are represented by their general velocity vectors V i (where i = 1, 2, or 3).

Basic solutions with a free-stream velocity of zero (static case) cannot be ob-

tained; therefore, two basic axisymmetric_ solutions are needed: V 1 with the

inlet duct extension closed and V 2 with the duct open. With these two solu-

tions, a combined solution having any combination of free-stream velocity and
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mass flow through the inlet can be obtained. For VTOL inlets, usually the

only axisymmetric case of interest is the static case.

For inlets in crossflow operation, a third basic solution is needed: the

crossflow solution V3" In this case, the free-stream velocity ispure per-

pendicular to the axis. The duct extension is made long enough so that the

flow in the region of interest is not affected by the condition of the downstream

end (open or closed).

The control station shown in figure 3 is a set of points spanning the pas-

sage (like a pressure rake). The function of the control station is to control

the flow rate of the combined solution. The control station points are not

needed to get basic solutions; however, since they are needed to get combined

solutions, they must be specified along with the profile so that basic solution

velocities are obtained at the control-station points. Any other points or sta-

tions where data are desired must also be specified along with the basic solu-

tion profile.

Combined Solutions

Since the governing equations of incompressible potential flow are linear,

the basic solutions can be linearly combined to form solutions of interest for

the given configuration:

V--AV1+ sV2÷ cV3 (1)

where V is the velocity vector at any point of the combined solution and A,

B, and C are the combination coefficients that are determined by writing

equation (1) in terms of three specified quantities of the combined solution, as

shown in figure 4. These quantities are: the average axial velocity at the con-

trol station Vc; the magnitude V_ and the direction _ of the free-stream

velocity.

Control station. - The average axial velocity Vc at the control station

is defined by
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_?S _8_2_ --
V. _oR d_ dR

R H -0

where R is the radius from the inlet axis, R S is the shroud radius, R H is

the hub radius, _o is the unit vector in the axial direction, and 8 is the cir-

cumferential coordinate. Substituting equation (1) into equation (2) yields

_R/ (AVi" _o + BY--2"_o ÷ CV3" _o)Rde dR

Vc <4-
Let the average axial control station velocity of basic solution i be repre-

sented by Vc, i. Then,

(4)

Since the Vi are known, Vc, i can be obtained by numerical integration. The

values of Vc, 1 and.ffc,2 will, in general, not be zero; however, Vc, 3 is

always zero, since V 3 • n o is equal to (V3" no)8= 0 cos e and :_

(V3 cos eR d8 dR = (V3" - R dR cos 8d8 = 0-0 " n-°)8=O n°)o=O 8=0

_o)e= owhere (V3" is a function of R, only. Substituting equation (4) for i = 1

and 2 into equation (3) then yields

Vc = AVc, 1 + BVc, 2 (5)
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where V c is prescribed and Vc, 1 and Vc, 2 are obtained by numerical in-
tegration of equation (4).

Free stream. - Two equations are obtained for the undisturbed free-stream

conditions: one for the component of the free-stream velocity in the axial di-

rection _o and the other for the component in the direction 90 ° to the axial.

In the axial direction,

V°ono = AVoo, I "no + BVoo,2 " no + CVoo,3" no (6)

Now, in the Douglas program, the magnitude of Voo is always 1.0, and the

directions for the three basic solutions are as shown in figure 3. Thus,

v_,l. _o =v_,2. no = 1.0 (7)

and

m

The prescribed V_

v_,3. _o = 0 (8)

is at some angle a with the axial direction so that

V_" n o = V_ cos a (9)

where c_ is the angle of attack in the Douglas program. (For combined so-

lutions for VTOL inlets, a is usually near 90 °. )

Then, putting equations (7) to (9) into equation (6) yields

Voocos ot=A+B

where V_ and a are known.

In the crossflow or _90 direction,

V_o "n90 = AV_o,I "n90 + BV---_,2"

(10)

n

_90 + CV_,3" _90 (II)
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where

V_,I" n90 = V_,2" ngo = 0

V_ 3.n90= 1.O

(12)

(13)

and

Voo" n--90= Voo sin
(i4)

Combining equations (11) to (14) yields

V_ sin _ = C (15)

Equations (5), (10), and (15) are three equations in the three unknowns A, B,

and C. Solving for A, B, and C yields

-V c
A=

Vc, 2 - Vc, 1

V c
B=

Vc, 2 - Vc, 1

+ cos Vc,2-Vc, /

COS _ Vc_ I ii
-Voo _ _c,2-Vc,

(16)

(17)

C = Voo sin u
(18)

For an inletin staticoperation (Voo= 0), equations (16)to (18)and (I)sim-

plifyto

-V c
A=

Vc, 2 - Vc, 1
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and

V=A 2-Vl 

w

From the four equations ((16) to (18) and (1)), the basic solutions (V 1,

V'-2, and V3 ), and the prescribed parameters (Vc, V_, and _), the velocity

of the combined solution can be obtained at any point (R, Z) originally specified

for the basic solutions. Velocities can also be obtained at any value of _ and

the given R and Z; however, velocities at additional R or Z values can

be obtained only by interpolation or by rerunning the basic solutions with the

additional points. The velocities are actually given in terms of their compo-

nents in cylindrical coordinates and from these components, any flow angles

can be obtained as wen as components in any other coordinate system. Also,

pressures or pressure coefficients can be obtained from the velocities. Fur-

ther, if enough measuring stations are included, streamlines can be obtained

by numerically integrating the velocity across each station to get the local

flow rate. Also, lift and drag forces on the inlet surfaces and the consequent

pitching moment can be calculated by integrating the pressures over the sur-

faces.

Application to Compressible Flow and Asymmetric Inlets

As was stated previously, the method of solution is based on the assump-

tions that the flow is incompressible and the configuration is axisymmetric.

However, in the case of real inlets, either one or both of these assumptions

may not be satisfied. However, the method can be applied to compressible

flow and to unsymmetrical inlets.

Compressibility. - In the real compressible flow, local variations in den-

sity may exist in the axial, radial, and circumferential directions, which are

not accounted for in the incompressible solution. However, several techniques

can be used to minimize the effects of these variations when applying the method

to practical cases.

First, the control station is located in the region of interest (e. g., at the

rotor inlet) rather than far downstream to minimize the effect of axial density
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gradients. Second, the prescribed velocity at the control station V c is

determined from compressible flow relations; that is, V c is calculated

from the given weight flow and the average compressible static density

corresponding to V c. This ensures that there will be good agreement be-

tween the actual compressible flow and the theoretical incompressible flow

at the control station, provided that the radial and circumferential density

variations are not too large. In general, reasonable correspondence between

real and incompressible solution values is to be expected wherever the

Mach rfumber does not differ greatly from the average Mach number at the

control station.

Third, as a further refinement, if greater accuracy is desired at

stations where the local Mach number is substantially different from that

at the control station, additional calculations can be made with minor var-

iations in the magnitude of the control station velocity such that one-

dimensional compressible continuity is satisfied at all axial stations in the

inlet. However, this approach cannot compensate for the effect of radial

or circumferential variations of density in the real flow.

In addition, surface or stream pressures are determined from the so-

lution velocities and compressible flow equations rather than from incom-

pressible flow in order to more closely represent the local pressures of the

real case.

Unsymmetrical inlets. - An approximate solution for unsymmetrical

inlets can be obtained from a succession of solutions based on several dis-

crete profiles at key circumferential locations. For example, a fan-in-wing

inlet may be adequately represented by profiles 90 ° apart: the foreward

(0°), the aft (180°), and the spanwise (90 ° and 270 °) profiles. A solution is

obtained for each of the profiles by assuming that the inlet is axisymmetric

with the given profile. This solution is assumed to hold exactly only at the

circumferential location of its profile. Solutions at the intermediate loca-

tions are obtained by averaging the solution at the key location or by fairing

a plot of the flow parameter of interest against circumferential angle.

The averaging technique is briefly described. Each key profile is used

to obtain solutions at several circumferential locations (say, every 15°) be-

tween it and the next key profile. This results in two solutions at each loca-

tion. These two solutions are averaged, with the solution of the nearer key
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profile given a greater weight. Thus, a complete circumferential distri-

bution of the flow can be obtained from only a few profiles.

This method of constructing a solution for a nonsymmetrical inlet by

using several axisymmetric profiles neglects the circumferential gradients

in flow parameters caused by the asymmetry. Its accuracy will thus depend

on the magnitude of these neglected gradients compared with the axial and

radial gradients. In general, the radial and axial gradients on a bellmouth

are usually relatively large; therefore, the accuracy should be adequate

except in cases of extreme asymmetry.

C OMPARISON WITH EXPERIMENTAL DATA

Several comparisons of theory with experiment are given in order to

demonstrate the reliability of the method of calculation in predicting the real

compressible flow in VTOL inlets.

StaticOperation

The surface pressure distribution on an inlet operating statically is given

on figure 5. The test inlet shown in the inset is a simple circular arc axi-

symmetric inlet set in a flat plate, so that it is almost identical to an ideal

inlet. This case was chosen because it has a very high inlet Mach number.

The static-to-total pressure ratio is plotted against the normalized surface

distance on the shroud and on the hub. Distances are measured on the shroud

and on the hub as shown in the inset. Even though there is a region of super-

sonic flow, theory and experiment are still in reasonably good agreement.

Additional comparisons of theory and experiment for static inlets are given

in reference 1.

Crossflow Operation

Several comparisons with experiment for inlets operating in crossflow

are given.

669



In figure 6 is shown the surface pressure distribution in a chordwise cut

of a fan-in-wing inlet. The static pressure coefficient is plotted against the

surface distance in percent chord. Four surfaces are shown in the plot, and

the distance on the abscissa corresponds to the numbers indicated on each

surface in the inset: the forward surface of the bellmouth, forward surface of

the centerbody, the aft surface of the centerbody, and the aft surface of the

bellmouth. The agreement is extremely good everywhere on the inlet. For the

surface forward of S equal to about 10, the real flow is two-dimensional

wing flow, whereas the theoretical results are for flow on the axisymmetric

idealization of the inlet. The experimental results are from the National

Research Council of Canada and are given in either references 6 or 7.

In figure 7 are shown velocity contours for the same inlet as that in fig-

ure 6. These contours are for data taken in the plane shown as the S = 0

station in figure 6. The data of figure 7 are for a crossflow ratio of 0.837,

whereas the data of figure 6 are for a crossflow ratio of 0. 285. This case

was chosen for presentation because, at this high crossflow ratio, the real

flow ordinarily separates from the forward boundary. However, in this test,

boundary-layer suction was distributed over the forward half of the bellmouth.

The agreement between theory and experiment is reasonably good in the

forward portion. The agreement breaks down in the aft region because the

boundary layer has separated from the aft side of the centerbody.

The theoretical results of figure 7 were obtained from the solutions of

three profiles: forward (0°), spanwise (90o), and aft (180°). Velocities at

intermediate locations (every 15 ° ) were obtained by the averaging technique

mentioned in the section Unsymmetrical inlets. Experimental contours were

obtained from the National Research Council of Canada (ref. 8).

In figure 8, a comparison is given for a severely nonsymmetrical inlet,

the Lockheed XV-4B lift engine inlet. The four profiles used for the theo-

retical calculations are shown in the figure. The forward profile is a circular

arc; the other three profiles are all different lemniscates. Theoretical re-

sults were obtained from each of these profiles; in addition, results were

obtained in the immediate vicinity (e30 °) of each profile as an aid in fairing

the curve.
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Experimental data were obtained from static pressure probes located

as shown in the inset of figure 8. The plot shows static pressure coefficient

as a function of circumferential location. The agreement is reasonably good

except in the 90 ° outboard region where the greatest deviation from axial

symmetry occurs.

APPLICATIONS

The capability of the method in adequately predicting the real flow in

VTOL inlets makes it extremely useful for several applications:

1. It provides trial and error solutions for the design of a bellmouth

for best performance in static and crossflow operation.

2. It provides surface velocity distributions for boundary-layer calcu-

lations for determining limiting decelerations to prevent separation.

3. It provides surface pressure distribution for calculation of inlet sur-

face lift and drag forces and pitching moment.

4. It provides rotor inlet conditions in static and crossflow operation for

rotor design and analysis.

An example of rotor inlet calculations is given in figure 9, which illus-

trates the effect of transition crossflow on rotor incidence angle for a fan-in-

wing inlet also shown in the figure. The rotor of the fan and the inlet were

both designed for static operation with a ratio of tip speed to fan axial velocity

of 1.67. If this inlet is operated at a ratio of transition crossflow velocity to

fan axial velocity of around 0.4, the flow incidence angle relative to the rotor

blades will deviate from the design value, as indicated by the contours in fig-

ure 9. It can be seen that, in the plane of the rotor inlet, the incidence angle

distortion due to the potential flow alone can be severe. (Incidence angle dis-

tortion does not include inlet total pressure variations or the modification of

the potential flow due to the presence of the rotor. ) Similar results can

be obtained to study the effect of different design parameters such as inlet

depth, transition velocity, inlet profile, and rotor conditions.
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CONCLUDING REMARKS

A theoretical method based on incompressible potential flow in axi-

symmetric inlets was described. Several sample calculations and com-

parisons with experiments were presented to demonstrate the reliability

of the method, and further applications were indicated. The method should

be a very useful and powerful tool in both the design and analysis of VTOL

inlets.
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DISCUSSION

F

U

MAURICE S. CAHN, Northrop Corp.: Boy, that is good agreementl

On figure 6 you showed an axisymmetrical inlet in a 2-dimensional wing,

is that right?

STOCKMAN: Yes. Well, the inlet isn't really axisymmetrical.

CAHN: I see.

STOCKMAN: At least, not in the region where the bellmouth approaches the

wing upper surface.

CAHN: Now, the data you show are in the plane of symmetry.

STOCKMAN: Right, those results are in the chordwise plane, the forward

profile and the aft profile, as shown in the inset of figure 6.

CAHN: How is the agreement, say, at 90 ° to that?

STOCKMAN: I don't have any experimental data for that. I am trying to

compare all the experimental data I can find.

CAHN: You do expect good agreement, don't you? All the other data you
showed was a lot tougher test than this. This is excellent agreement, and if
it also agreed in the 90 ° plane, it would look like almost the whole answer to
the problem.

I

STOCKMAN: What I do have on figure 7 are velocity contours which
include the effect of the 90 ° profile.

CAHN: Yes, but that had a lot of separation, I believe you said.

STOCKMAN: Yes, but I do have some experimental data at lower crossflow

ratios where it hasn't separated, but I haven't worked this up yet. I don't
have surface pressures for the 90 ° profile, but I have velocity contours in
the measuring plane.

JACK N. NIELSEN, Nielsen Engineering and Research, Inc.: I am amazed at

the excellence of your agreement, but I am concerned about why it is so good.

Because if I understand properly, you calculated the velocity field on incom-

pressible grounds, and then put the velocities into the compressible Bernoulli

equation. Did you put transformations on the inlet .

STOCKMAN: No. I should say that the only one that was really highly
compressible was the first one (fig. 5). The one on figure 6 with the very
good agreement was a low Mach number case.

NIELSEN: Okay, then let me ask you specifically, why did you really get
such excellent agreement with the highly compressible one considering the
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basis on which it was calculated? Is there something that is happening? You

wouldn't expect good agreement, would you, on a priori grounds?

STOCKMAN: I think it is the fact that you can specify the velocity at

the control station which is right in the region of interest, rather than far

downstream, say. So I specify the velocity there based on compressible flow,

and that kind of forces the agreement, at least there.

NIELSEN: You match the mass flows? Maybe that is the secret.

STOCKMAN: Yes, just at the one station, and then, if the variations in

density aren't too great, you should get fairly good agreement throughout the

region of interest.

JAMES S. KEITH, General Electric Company: I am concerned about the

problem of the pumping characteristics of the fan influencing the boundary

conditions. It appears to me that your boundary conditions are straight,

parallel flow down low in the duct.

STOCKMAN: Well, let me think. No. The only boundary conditions are

those three conditions that I am using to combine the basic solutions.

KEITH: Well, the fan tends to have its own flow rate distribution. A

general rule is that the fan will "suck" constant flow per unit area. The

incidence will change so that this condition will be met - not exactly, of
cours e.

STOCKMAN: I should have pointed out on the last slide that those

contours showing change in incidence were strictly potential flow. No effect

was taken of that attenuation due to the fan itself. Also, for the experi-

mental data, that is, the two for the NRC fan-in-wing inlet [figs. 6 and 7),

there was no fan installed. The test flow was produced by suction.

However, in reference 1 of the paper, which is a TN on just static flow,

in one of the comparisons shown there was a fan in the inlet, and the agree-

ment is better than that first one shown here [fig. 5) at the high Mach number.

ROGER W. GALLINGTON, U. S. Air Force Academy: You have already commented

on the compressibility. Why do you think the agreement is good in spite of

the compressibility? What about some kind of geometric parameter? Why do you

have good agreement without the axisymmetric condition being met? Do you have
a feel for that?

STOCKMAN: Well, what I think we are doing when we get this three-

dimensional solution by assuming that it is locally axisymmetric, is that we

are neglecting the circumferential gradients caused by the geometry. Now,

usually these gradients are small compared to the radial and axial gradients,

so I think that this doesn't show up significantly unless they get severe,

like they did on figure 8, in the region of severe deviation from axial

symmetry.
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BARNES W. McCORMICK, JR., Pennsylvania State University: Your assumed

model must break down as the diameter of the fan gets large in comparison with

the chord of the wing. Have you done anything on this? Have you looked at

this to see what the limitations are?

STOCKMAN: No, I haven't. I'm inclined to agree with you that the model

might break down in crossflow and I think this should be looked into.

PETER B. S. LISSAMAN, Northrop Corp.: I'd like to compliment the

speaker, too. I think that is an excellent correlation, and I think that

there is no reason to go any further, at least with the model that he assumes,

because you can't expect any better accuracy.

In terms of this nonreality of the boundary conditions which McCormick

pointed out, I think what you have actually done is something in terms of a

perturbation solution of the inner part of the flow, and what you have shown

numerically is something of great interest to me, which is that it is probably

the local conditions that count, and the far distant conditions, both away

from the fan on the outer surface and what goes on inside the duct after that,

apparently don't grossly affect the flow around the lip, because your next

step after this would be a very hard one. The next development would be

either placing a constant head, actuator disk, in the position of the fan, in

which case you have got to answer the whole mess of what goes on on the other

side of the actuator disk_ or the point that McCormick made of what about the

leading edge and what about the trailing edge, and what about the perturbation

in the neighboring fields. What I think is particularly interesting is one of

these things that so often seems to happen with perturbation analysis, which

is that infinity is darn close to your model, and things which look to us to

be quite nearby physically are not affecting the flow field.

STOCKMAN: Well, I have found that it depends on what you are interested

in in the flow field. For example, if you are interested in the surface dis-

tribution on the forward lip of the bellmouth, it is sensitive to the length

of that extension which replaces the wing. When I first started out with the

configuration that has the very good agreement (fig. 6), I had a length, that

is, the outermost radius of the extension, that was 2-1/2 times the fan radius

because I found that for static cases this was good enough. But I didn't get

very good agreement in crossflow, so I kept increasing that length. %he plot

you saw there (fig. 6) I think was five times, and I did it at 10 and 15,

after the figure was made, and the agreement did keep getting better, but,

not very significantly.

One other point, when I want to do boundary-layer calculations on the

inlet, I use the Douglas 2-dimensional program to get the flow around the wing

and fair that into the results from the axisymmetric program, so I get a

velocity distribution all the way from the stagnation point on up the wing and
down into the inlet.
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ANALYSIS OF THE FLOW FIELD OF A JET

IN A SUBSONIC CROSSWIND

By Richard J. Margason

Langley Research Center

SUMMARY

o_

The trends of the jet-induced effects on a turbojet or turbofan V/STOL aircraft in

transition flight are discussed. A detailed qualitative description of the flow in the

vicinity of the jet is presented to illustrate the blockage by the jet, the separation of the

free stream, the rollup, and entrainment of the jet. Then a method for computing the

cross section of the jet wake is developed. The pressure distribution induced in the

plane of the jet exit is considered. The scatter among three sets of experimental data

is illustrated. Finally, two different methods for computing the pressure distribution

are described.

INTRODUCTION

The flight regime between hover and wingborne flight is unique to V/STOL aircraft.

The lift force is obtained entirely from the engine in hover and entirely from the aero-

dynamic lift of the wing in conventional flight. As illustrated in figure 1 for a turbojet

or turbofan V/STOL aircraft, this flight regime is characterized by a strong interaction

between the high-speed jet and the low-speed free stream. The jet issuing from the air-

craft is swept rearward by the free-stream flow and rapidly rolled up in a pair of vor-

tices. This wake induces suction pressures on the fuselage and a distribution of down-

wash over the aircraft. This downwash is effectively an induced twist on the wing and

tail and an induced camber over the length of the aircraft.

Figure 2 presents the general trend of jet-induced effects using experimental data

(refs. 1 to 6). Data are presented for the increment of lift and the increment of pitching

moment due to the interference between the jet and the free stream. There is usually a

loss in lift which tends to increase with increasing forward velocity. The loss in lift is

about the same with the tall off of the vehicle as with the tail on. There is an increment

of pitching moment in transition flight which tends to increase nose-up with increasing

velocity. Because of the change in downwash in the vicinity of the tail, there is an addi-

tional increment of pitching moment induced when the tail is on. The purpose of this

paper is to examine the character of the jet wake and to evaluate some methods of rep-

resenting this wake. Several other investigations of this problem are presented in

references 7 and 8.
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pressure coefficient,

SYMBOLS

Local pressure - Free-stream staticpressure

Free-stream dynamic pressure

(N)

jet diameter, ft (m)

increment of lift caused by flow from jet, lb

increment of pitching moment caused by flow from jet, ft-lb (m-N)

sequence number of vortex filament around circular exit, counting clockwise

from windward side

number of vortex filaments used to describe jet cross section

path element vector, ft (m)

radius of curvature of jet-path center line, ft (m)

rj jet radius, ft (m)

T thrust, lb (N)

velocity vector, fps (m/s)

V_o free-stream velocity, fps (m/s)

Vj jet velocity, fps (m/s)

x,y Cartesian coordinates, ft (m)

z complex plane coordinate, ft (m)

r circulation strength, ft2/sec (m2/sec)

8 cylindrical angular coordinate

natural jet coordinate along axis of jet, ft
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complex velocity potential

Subscript:

n vortex filament sequence number

QUALITATIVE DESCRIPTION OF A JET IN A CROSSWIND

The following qualitative description of the flow phenomena associated with a jet

in a crosswind is based primarily on flow visualization done by ONERA. (The following

material is taken from Office National D'_tudes et de Recherches A_rospatiale film

no. 575 entitled "Flows With Large Velocity Fluctuations," 1968.) Figure 3 is a sche-

matic of a photograph taken in a water tunnel. The sketch shows a jet exhausting ver-

tically from a fiat plate into a free stream moving from left to right. Near the leading

edge of the flat plate is a row of orifices through which colored milk is emitted. Fig-

ure 4 is the photograph of the flow-visualization experiment where the filaments (colored

milk) show how the streamlines in the free-stream flow are influenced by the jet efflux.

Consider two of these filaments, the one on the center line and the one just outboard.

First, the streamline on the jet center line divides upstream of the jet exit and flows

around it; this indicates that there is a stagnation point on the upstream face of the jet.

Second, the filament outboard of the center line passes beside the jet and is then induced

upward into the turbulent wake region behind the jet. This filament forms a saddle-

shaped region immediately downstream from the jet which indicates another stagnation

point. A portion of the filament from the saddle is induced upstream into the jet. The

visible portion of the jet indicates flow from the colored filament which has been entrained

into the jet. The rest of the filament from the saddle passes downstream and mixes with

the wake region.

CALCULATION OF THE ROLLUP IN THE JET WAKE

Calculation of the rollup of the jet wake can be

made by using information from Chang-Lu (ref. 9).

This paper was concerned with the discharge of sewage

into a river. The method is two dimensional and is

described as follows. The cross section of the jet is

described by filaments of vorticity. The sketch shows

the jet exit and the free stream from the left. A dis-

crete number of filaments parallel to the direction of

the jet velocity are spaced around the jet exit. The

¥

v_
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circulation strengths of these vortex filaments are defined by the complex potential func-

tion which describes flow about a circular cylinder perpendicular to a uniform stream;

this function is written

The total derivative of this complex potential function yields the velocity vector induced

by the presence of the cylinder; thus

--4"

V =d_
dz

Then, this velocity vector is integrated along a path to determine the circulation strength

of the discrete vortex filaments, which is

F=_ V.d_"

Integration over a sector of the circle gives the circulation strength for a single vortex

filament as

F n = 4Voor j sin _ sin (n - 1

These discrete vortex filaments are used to determine the change in the cross sec-

tion of the jet as the flow passes downstream. This is done by a series of computations

where the cross-section deformation is treated in two dimensions - x and y. Each of

the vortex filaments is influenced for a small increment of time by the other filaments

in the cross section. Since these filaments lie on a free surface, they must move to

assume new positions where the net force induced by the other filaments is zero. This

process is repeated many times as the flow moves away from the jet exit. As a result,

the wake cross section changes shape. This computation procedure has been simplified

and interpreted in figure 5 to represent a three-dimensional jet in a crosswind. The

cross section is represented with 12 vortex filaments. The circular cross section in

section A-A flattens on the downstream face to form the cross section labeled sec-

tion B-B. Then, farther down the wake at section C-C, the characteristic kidney shape

is formed. In section D-D and farther downstream, this evolves toward a very tightly

wound pair of vortices. To form the surface of the wake boundary, a three-dimensional

lattice of vorticity is constructed around the jet path by connecting these cross sections

with filaments of vorticity. The jet path has been obtained from an empirical equation.
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This series of computations represents one feature of the jet, the rollup into a pair of

vortices.

Figure 6 shows the deformation as plotted by a computer. The cross section is

described by straight-line segments which connect 96 vortex filaments spaced around the

jet perimeter. This larger number of vortices is used to get a better description of the

changes in shape. The cross sections are presented at 1-diameter increments along the

jet axis starting at the circular jet exit and moving down the jet path for a distance of

7 jet diameters. They represent the rollup of the wake where the effective velocity ratio

is 0.25. The overlapping lines occur near the spiral because the computer used straight

lines to fair between the vortices. The evolution of the wake into a pair of vortices is

clearly shown. Previous attempts at using this procedure to describe the rollup have

failed to form the spiral pattern because of truncation error in the computation. The

last three cross sections show the beginning of these errors by the presence of several

inflections in the curvature of the spiral.

The similarity of this representation to the experimentally observed shape is indi-

cated in figure 7. This photograph shows the cross section of a jet wake in a water tunnel

at a point approximately 6 nozzle diameters along the jet-path axis.

FLOW INDUCED BY THE JET

An adequate mathematical model of a jet in a crosswind should describe all the

major features of the flow field. One measure of adequacy is the estimation of pressure

distribution on a fiat plate in the plane of the jet exit. To obtain a standard for compar-

ison, consider a portion of the pressure distribution. Data obtained from three experi-

mental investigations (refs. 10 to 12) at an effective velocity ratio of 0.125 is presented

in figure 8 for two sets of constant pressure contours. The data at a pressure coefficient

of -0.2 show that two investigations yield similar contours. The third investigation gives

results which cover a much larger area. Examination of the test conditions indicates

that the boundary layer on the plate was very thin for the first two sets of data and was

extremely thick for the third set of data. However, there must be other factors involved

because all three contours are quite similar for the second pressure coefficient, -0.3.

Yet, even here, noticeable differences exist in the downstream wake region. These data

are presented to describe the experimental results and to indicate the type of scatter

present in available data. The data obtained by McMahon and Mosher will be used for

comparisons later in this paper.

The usefulness of the three-dimensional vortex-lattice model of the jet described

previously was examined by computing the pressure distribution induced on a fiat plate.

Figure 9 presents this computed pressure distribution. It is entirely different from the
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experimental data, a result which is not unexpected because this model describes only

the effect of the free stream on the jet. The large positive pressure ahead of the jet

indicates too large a blockage effect. The large positive pressure region downstream

indicates that the flow separation is not represented. Finally, the negative pressure

regions are too small because the entrainment is not adequately represented. As a

result, this model does not adequately represent the influence of the jet wake on the

induced pressure distribution.

There are, however, two other models which only represent the effect of the jet

and do not accurately describe the detailed features of the jet. These models were

developed by P. T. Wooler (refs. 13 to 15). The first is a vortex-sheet model shown in

figure 10. This model uses a series of horseshoe vortices laid along an empirical jet

path. The circulation strengths of the vortices are determined by the diameter of the

jet, the local radius of curvature of the jet path, and the square of the inverse of the

effective velocity ratio. The second model, shown in figure 11, uses sinks and doublets

to represent the effect of the jet. This model calculates the jet path from a simplified

set of the equations of motion. The solution of these equations requires that several

constants describing the strengths of the sinks and doublets be determined empirically

so that the computed path agrees with the experimentally determined path. This repre-

sentation of the jet uses doublets located uniformly along the jet axis. The jet cross

section is simplified. It is assumed to vary from a circle at the exit to an ellipse at

some distance down the jet path. Then, at intervals of 1 jet-exit diameter, lines of sinks

are placed across the jet path along the major axes of the elliptic cross sections.

Figure 12 presents a comparison of the pressure distributions from one set of

experimental data with calculated results from the vortex-sheet model and the sink-

doublet model. Data are presented for a pressure coefficient of -0.2. This comparison

indicates that both models give reasonable results outside of the wake region at distances

of 2 or more diameters from the jet exit.

This agreement indicates that these last two models may represent, to a large

degree, the effect of the jet even though they do not describe the jet or the induced flow

close to the jet. Further work is needed to develop a single mathematical model which

describes both the jet characteristics and the induced flow field. This development will

require more detailed experimental data on the jet as well as additional analytic work.

CONCLUDING REMARKS

The analysis of the flow field of a jet in a subsonic crosswind provides an under-

standing of the jet-induced effects on a turbojet or turbofan V/STOL aircraft in transi-

tion flight.
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The complex character of the flow in the vicinity of the jet has been described.

The primary features are the blockage of the free stream and its separation as it flows

around the jet, the rollup by the jet into a pair of trailing vortices, and the entrainment

of free-stream fluid into the jet. The entrainment can be considered in two parts: the

fluid induced into the wake region by the swirling flow associated with the vortex pair

and the fluid entrained by viscous mixing on the periphery of the jet surface. At the

present time, there is very little quantitative experimental data available to provide

detailed understanding of the relative importance of these features.

A method for computing the rollup of the jet wake into a pair of vortices has been

developed and described. The pressure distribution induced by the jet in the plane of the

jet exit has been considered. Several sets of experimental data were presented and two

methods for computing the pressure distribution were presented and compared with exper-

imental data.

Although the jet rollup and the pressure distribution in the plane of the exit can be

computed by different methods, further work is needed to develop a single mathematical

model which describes both the jet characteristics and the induced flow field. This

development will require more detailed experimental data on the jet as well as additional

analytic work.
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LIFT-JET V/STOL AIRCRAFT IN TRANSITION FLIGHT
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SCHEMATIC OF JET IN CROSSWlND

.J

Figure3

PHOTOGRAPH OF JET IN CROSSWlND
ONERA WATER TUNNEL VISUALIZATION

Figure4
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reproduction method to provide
better detail.
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REPRESENTATION OF A JET WAKE WITH
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WAKE CROSS SECTIONS SHOWING ROLLUP INTO PAIR
OF VORTICES

_/d =0

{v,,,,,vj=o.25_

_/d = I

(/d = 2

,_/d: 4

4[/d =6

Figure6

_'/d =5

_'/d =7

695



,JET CROSS SECTION
ONERA WATER TUNNEL VISUALIZATION

Figure 7

PRESSURE DISTRIBUTION AROUND A CIRCULAR JET
EXPERIMENTAL DATA; Vco/V j = O.125
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PRESSURE DISTRIBUTION AROUND A CIRCULAR ,JET

CALCULATED USING VORTEX-LATTICE MODEL; Vco/Vj=O.125

Figure 9
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DISCUSSION

DAVID FINKLEHAN, U.S. Air Force Academy: One check on your truncation

error might be in keeping track of the centroid of one-half of your symmetric

vortex distribution. Do you have any idea how well that was preserved?

MARGASON: I made no check of that.

FINKLEMAN: Also, how many vortices are appropriate to describe the

development of the weight properly? Is 12 the magic number?

MARGASON: Oh, no. Usually I try to get a number which is a multiple of 4

for symmetry purposes. I have tried anywhere from 8 to 96. It just depends

on how much detail you want to obtain in the cross-section shape. I have

found no difficulty at 96, and I suspect more vortices could be used.

FINKLEMAN: Also, with regard to your pressure distribution near the jet

exit, perhaps you are aware of the paper by Westwater (F. L. Westwater,

"Rolling Up of the Surface of Discontinuity Behind an Aerofoil of Finite

Span," British ARC R and M No. 1692, August 1935), even older than the ones

you cited, in which he tried to trace the roll-up of a vortex sheet behind an

elliptically loaded wing. He was able to show that, since this is a slender

body theory, the theory really should apply only several spans downstream.

Trying to get the influence near the jet exit might be a misapplication of this

particular two-dimensional theory. The two-dimensional theory presented here

describes only the roll-up of the jet efflux.

MARGASON: It will take additional experimental information on the

characteristics of the jet to determine how to describe the additional features

needed. This is being worked on at the present time. Some computations have

been done with a line of sinks added. These results look encouraging, but

they are not ready to be presented at this meeting.

GEORGE R. BARTE, JR., General Electric Co.: You made a rather brief

observation to some current work on the application of the material in Slide 5

to the problem of sewage discharge into a river. Now, since this is an

interface area between hydrospace and aerospace, as well as having some imme-

diate interest in some problems that we are currently working on, would you

care to comment a little more on this particular work, who is doing it, and so

forth? (Slide 5 is incorporated in the text as the sketch and the equations.)

MARGASON: The work I referred to was done in 1942, so of course it is not

current. There is a fair amount of interest in this problem for another appli-

cation: a smokestack discharging into the atmosphere with a crosswind. Keffer

at the University of Toronto has done quite a bit with this.

Aside from that particular example, most investigators are interested in

the problem for the aeronautical applications.

BARTE: Have you cited the reference to the 1942 work in your paper?
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MARGASON: Yes. Also we had a symposium on this subject at Langley in

September where there were 12 papers presented on the subject. This is avail-

able as NASA Special Publication 218. There are quite a few references in
that document.

RAYMOND SEDNEY, Martin Co. : I wanted to get one thing cleared up about

these very nice movies from the ONERA water tunnel. The water tunnel work

there that I am familiar with is all extremely low Reynolds number, and it is

always laminar flow. You mentioned turbulent flow. Is the Reynolds number

high enough in these results for turbulent flow?

MARGASON: No, this is still quite low Reynolds number compared to

aircraft applications. The primary purpose of the film was to indicate the

character of the flow, to give a qualitative feel for it, and it is not

necessarily a precise representation of airplane applications.

SEDNEY: Yes. Now, the other point I wondered about concerned the actual

application. You mentioned that from the water tunnel visualization down-

stream on the flat plate there are two streamwise vortices.

MARGASON: Yes.

SEDNEY: Do you have any idea whether the presence of those vortices in

a real case is important?

MARGASON: The strength of these is quite weak, but they are on the

surface of the body, and the only configuration where we have any quantitative

information is for the case of a jet coming out of a flat plate. For three-

dimensional bodies we do not have any precise information. There are several

experimental investigations under way which may give us some information on

that, but they are not complete at the present time.

JOSEPH P. GIESING, Douglas Aircraft Co.: I just want to get one thing

straight on the roll-up of your jet. Evidently you assume a vorticity distri-

bution and then let it roll up without any change in vorticity strength?

MARGASON: That's correct.

61ESING: This isn't really the case is it? I mean, in a jet you have a

bound vorticity which continuously feeds in shed vorticity down the jet. This

process keeps building up the shed vorticity to a final value, does it not?

MARGASON: The representation of the jet presented in this talk includes

only the effect of the crossflow on the jet. The mixing between the jet and

the free stream are certainly not accounted for. These would get involved in

your comment on the dissipation or shedding of vorticity. At the present time

we do not know how these factors influence the variation of vorticity along

the jet.

Last summer we did a few experiments where we tried to measure the

vorticity in the jet. We found at a cross section of about 6 diameters
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downstreamfrom the nozzle (measured along the jet path) the vorticity was

approximately twice the vorticity which this roll-up model gives you. This

indicates that we are not considering all of the sources of vorticity.

Those measurements also indicated that the flow is spreading and that the

vorticity certainly is dispersing over a fairly wide area as the jet efflux

moves on downstream, so exactly what is going on in the flow is not completely

clear at the present time. We hope to get a little better understanding of

the flow in future experimental investigations so that we can do a better job

of modeling it.

GIESING: I was just wondering if you maybe adopted some simplified or

experimental curve of the jet trajectory to base your calculation of bound

vorticity on, like one of the models you showed. It would give you a kind of

idea of what the shedding vorticity strengths were as you progressed down-

stream. You could possibly build that into your jet roll-up program.

MARGASON: This is a possibility.

SELDEN B. SPANGLER, Nielsen Engineering and Research, Inc.: Rich, if

you can characterize the wake, say three or four diameters downstream of the

exit, like a rolled-up pair, and if you could somehow calculate the proper

strength of that pair, what success do you think you would have in predicting
the downwash over the tail of that aircraft?

MARGASON: The vortex-pair model of Wooler might be useful. Also the

calculation for vortex roll-up has been modified by Hackett of Lockheed-

Georgia Co. to handle this problem. He presented his results last July at an

AIAA-CASI Meeting in Ottawa (J. E. Hackett and M. R. Evans, "Vortex Wakes

Behind High-Lift Wings," AIAA Paper No. 69-740, July 1969). They provide

a detailed description of the wing wake roll-up. This should provide a basis

for estimating wake effects at the tail of an aircraft.

LEON E. RING, ARO, Inc.: Could you comment on how important it may be to

get the right jet curvature, say in this vortex lattice model. That is, how

much is fed back into the pressures on the wing?

MARGASON: You have to locate the fluid from the jet at the proper point

in space to get its influence on a wing or other surface. From this point of

view you certainly need to have a fairly adequate representation of the path
of the jet.

J. ROSKAM, University of Kansas: It has been found that you can get some

pretty fierce rolling moments when you put that situation in crossflow. Is

your model suitable to predict those?

MARGASON: I assume you mean crossflow which is at a sideslip angle?

ROSKAM: Yes.

MARGASON: It would be a matter of predicting the pressure distribution

over the region and integrating it properly, and you would find it is skewed
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off to the side of the original centerline. Another application where you

introduce some rather violent rolling moments is when you use reaction jets

on the wing tips for roll control. Here you have the same sort of pressure

fields induced in the vicinity of the jet and reduce the net thrust. This in

turn reduces the net rolling moment produced by the reaction jets.
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THEORETICAL INVESTIGATION OF DUCTED FAN INTERFERENCE

FOR TRANSPORT-TYPE AIRCRAFT

By S. B. Spangler, M. R. Mendenhall,

and M. F. E. Dillenius _%%

Nielsen Engineering and Research Inc. " %

SUMMARY

A method has been developed for analyzing the aerodynamic interference

effects associated with a wing-pylon-engine configuration typical of a modern

high-speed transport aircraft. In order to perform the analysis, it was

necessary to develop two new flow models. The first is a nonplanar lifting

surface method, using a vortex lattice approach, capable of treating wing-

pylon configurations. Provision was made in this model for modification of

the pylon tip loading distribution to account for the force carryover effect

caused by the engine at the pylon tip. The second model is that for a high-

bypass-ratio turbofan engine. The essential characteristics modeled are the

fan and core engine ducts, and the thrusts and resulting wakes of both the

fan and core engine. These flow models are used in an iterative fashion to

solve for the interference effects, including detailed load distribution and

critical Mach number.

Comparison of the methods with data and other theories for load _

distribution and induced velocities for a wing alone, wing-pylon, and wing-

pylon-engine indicate good agreement.

INTRODUCTION

This paper is directed towards the problem of aerodynamic interference

between the wing, pylon, and engine of a modern subsonic transport-type air-

craft at small angles of attack. Because of the complexity of the problem,

most of the work in this area has been experimental (ref. I). An analysis

has been done treating the flow between the wing and engine cowl on one side

of the pylon as a channel flow (ref. 2). No theoretical investigation has

been reported in which the components have been treated as aerodynamically

loaded surfaces in an external flow with interference between components.

The purpose of this paper is to describe such an investigation. The work is

being sponsored by the Ames Research Center, NASA.

The problem of interest is illustrated in figure i. The configuration

is a swept wing under which a pair of high-bypass-ratio turbofan engines is

mounted on swept pylons. The three main aspects of interest are the overall

interference characteristics (i.e., favorable or unfavorable), the detailed

load distribution on the wing, pylon, and engine cowl, and the critical Mach
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number. In order to compute these characteristics, flow models must be

derived for each of the major components, interference flow fields must be

determined, and component load distributions computed for the locally per-

turbed flow. In this paper, the general approach and methods will be

described, followed by a presentation of some results obtained to date.

NOTATION

aspect ratio

b span

c chord

CL wing lift coefficient

cZ section lift coefficient

M Mach number

Sp pylon span

V free-stream velocity

x chordwise distance

y spanwise distance

e aircraft angle of attack

aw wing angle of attack

yD e axisymmetric bound vorticity on engine duct

YDf axisymmetric bound vorticity on fan duct

Ye wake vorticity trailing from engine duct

yf wake vorticity trailing from fan duct

Yae bound vorticity on engine duct due to angle of attack

yaf bound vorticity on fan duct due to angle of attack

n dimensionless spanwise distance, Y

A sweep angle
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DISCUSSION

General Approach

The elements of the general approach are shown in figure 2. The

analysis is based on the use of potential flow methods. It is necessary

first to obtain a singularity flow model for each major component. The flow

model in general consists of a distribution of bound and trailing vorticity

placed on the mean surface of the component. The strength distribution of

the vorticity is determined by satisfying the boundary condition of flow tan-

gency to the mean surface at selected points on the configuration. The

loading distribution on the component is then obtained from the product of

the strength of the local vorticity and the local velocity acting on the

element of vorticity. Furthermore, the known vorticity strength distribution

can then be used to predict the flow field distortion in the vicinity of the

component.

The manner in which the flow models of each of the components are

combined to obtain interference effects is as follows. Component A (for

instance, the wing) is assumed to act in a uniform onset flow and its vorti-

city strength distributuion is determined. Using this known distribution,

the perturbations on the uniform flow over component B (for instance, the

engine) are computed. The vorticity strength distribution representing

component B is then determined with B acting in the perturbed flow. Using

the vorticity distribution of B (which now includes interference), the

flow perturbations induced by B on A are computed and superimposed on the

uniform flow over A. The vorticity strength distribution on A is recom-

puted, accounting for the perturbed flow from B. This process can be con-

tinued in an iterative fashion until the strength of the vorticity distribu-

tion for a given component changes less than a prescribed amount between

iterations, at which time the detailed load distributions and surface pres-

sure may be determined. In practice, with the configurations examined to

date, one complete iteration is sufficient.
"i-

Component Flow Models

Wing-pylon.- The wings of modern, high-speed, transport-type aircraft

are swept, have a relatively high aspect ratio and some dihedral, and are

twisted and cambered. The pylons are highly swept forward, may have a toe-in

angle, and have a root chord which is an appreciable fraction of the local

wing chord. With these characteristics, the pylon should be considered an

integral part of the wing for purposes of developing a flow model, because

there is no simple combination of separate wing and pylon models that will

properly represent the mutual interference effects, particularly in the

wing-pylon junction region.

Since no general method exists for handling a wing-pylon combination

that will yield chordwise load distributions, a nonplanar lifting surface

_ethod was developed. The flow model selected is basically a vortex lattice
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scheme, as illustrated in figure 3. The wing and pylons are divided into

area elements, on each of which is placed a horseshoe vortex with the (yawed)

bound leg along the element quarter chord and the trailing legs along the

streamwise sides of the element. The flow tangency condition is applied at

the midpoint of the three-quarter chord line of the element (control point).

The vortex layout on the wing and pylons is arbitrary but is governed
by the following considerations. The spanwise widths of the area elements

in a given chordwise row must be identical, but the widths of two adjacent

rows need not be the same. In this way, smaller width vortices may be used

in regions where the load is changing rapidly. The pylon is treated in

identically the same fashion as the wing. Both pylon and wing are required
to have the same number of vortices in the chordwise direction. The area

elements in the region of the wing-pylon junction are arranged so that the

trailing legs from the two wing rows and the upper pylon row all coincide at

the junction. The total number of vortices is limited by the storage capac-
ity of the digital computer used, and for the IBM 7094 this limit is i00

vortices on the semispan and one pylon. In the work done to date, four

chordwise rows of vortices have proven to be sufficient to get chordwise
loading information.

The flow tangency boundary condition and the load distributions are

calculated in much the same manner as in Margason and Lamar's planar vortex

lattice computer program. (Margason and Lamar's work is unpublished; however,

the program may be obtained from them at Langley Research Center.) The

Prandtl-Glauert transformation is used to account for compressible flow
effects.

The vortex lattice flow model has a number of advantages for the present

nonplanar problem. The use of several vortices along the chord permits
chordwise loading variations to be obtained, an important consideration
when engines and swept pylons are involved. The use of a discrete vortex

model rather than a continuous vorticity distribution permits the velocities

induced off the wing to be readily evaluated. The method is readily adaptable
to inclusion of engine-induced velocities at the control points for calcula-

tion of interference effects. The use of yawed rather than rectangular vor-

tices permits somewhat fewer vortices to be used, particularly on highly swept
surfaces. The use of variable width vortices permits a concentration of vor-

tices in areas where the loading is changing rapidly. Finally, the discrete

vortex approach is amenable to inclusion of a pylon tip loading correction, as
discussed below.

Pylon tip model.- The addition of an engine to the tip of a pylon in a

sidewash has the effect of causing a nonzero loading at the pylon tip and

some force carryover onto the engine. As a consequence, it is necessary to

modify the pylon vortex model near the tip. An approximate method is used

for this purpose, based on the wing-tip tank method of Robinson and Zlotnick

(ref. S), as illustrated in figure 4. An infinite cylinder alined with the

engine axis is considered to exist at the pylon tip, and the horseshoe vor-

tices on the pylon are imaged within the cylinder. In this manner, the

boundary condition for cancelling the flow induced by the pylon vortices
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through the "engine" is satisfied exactly in the plane of the pylon and at

large distances upstream and downstream of the pylon and satisfied approxi-

mately elsewhere on the cylinder. The image vortices represent the "lift

carryover" onto the engine and serve to modify the strengths of the pylon

vortices because of the additional velocities induced at the pylon control
points.

Engine model.- The engines of interest are high-bypass-ratio turbofan

engines which tend to resemble high-pressure-ratio, single-stage fans driven

by a core engine within an airbreathing centerbody. For purposes of

examining the flow interference between the engine and the wing-pylon, the

significant features in an engine model are the representation of the fan

and engine ducts and the fan and engine thrusts together with their resulting
wakes. The model used herein is an extension of earlier theoretical work

done on ducted fans at Nielsen Engineering and Research, Inc. (ref. 4), and

is shown in figure 5. The engine and fan wakes are represented by semi-

infinite concentric, constant-diameter vortex cylinders entending downstream

coaxial with the engine centerline. The fan and engine ducts are considered

to be thin cylinders which may have camber and taper. The fan and engine

thrusts are considered to be produced by uniformly loaded actuator disks

within the ducts. A bound vorticity distribution is used on the fan and

engine ducts to cause the local flow to be tangent to the mean surface of the
ducts.

The engine model flow parameters are determined from gross engine

performance characteristics which are assumed known from the flight condition.

The information required is bypass ratio, air weight flow, thrust, and thrust
division. These quantities are used to determine the wake velocities and

strength of the wake vortex cylinders (T). The axisymmetric portions of the

duct-bound vorticities (YD) are then computed by simultaneously requiring
flow tangency on the fan and core engine ducts due to the wake-induced flow

and the free stream. If the engine is in an upwash field, the upwash is

averaged over the fan duct chord and the core engine duct chord, and an addi-

tional duct-bound vorticity (Ta) is used to cause flow tangency in the

upwash flow. A sidewash flow over the engine is treated in the same manner

as the upwash flow. The final engine flow model is then the superposition of

the axisymmetric and crossflow solutions. Once the bound and trailing vor-

ticity distributions on the engine are known, the flow field in the vicinity

of the engine may be determined for the purpose of making interference
calculations.

Combination of flow models.- A solution for a given wing-pylon-engine

case makes use of the above noted flow models in the following manner. A

solution for the wing-pylon in a uniform flow is calculated initially, and

wing-pylon induced velocities at a number of points at the engine location

are determined. The engine vorticity distribution is then determined for an

onset flow consisting of the free-stream axial and upwash components plus

wing-pylon induced upwash and sidewash velocities. The engine-induced veloc-

ities at the wing and pylon control points are computed, and the wing-pylon

performance recomputed. Experience has shown that the interference effects
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do not change significantly if a second iteration is carried out, so the

computation is stopped here. With closely coupled engines, additional

iterations would probably be required.

The final step consists of computing total forces and moments, load

distributions, and chordwise pressure distributions on the configuration.

The chordwise pressure distribution on the wing and pylon are obtained by

fitting a Glauert series to the several chordwise circulation values computed

by the vortex lattice method to get a continuous chordwise vorticity variation.

The latter is then related to the discontinuous velocity over the airfoil sec-

tion. The velocities due to all components and the free stream are summed and

augmented by a two-dimensional thickness correction. The Bernoulli equation

is then used to obtain pressure coefficients.

RESULTS

Several sets of results are shown in this paper to illustrate the

relative importance of interference effects and the degree of correlation

with data and other theoretical results. The wing-alone case is considered

first, followed by results for a wing-pylon and a wing-pylon-engine

configuration.

The first set of results, figure 6, shows correlations with data for

downwash and sidewash velocities induced below a wing in a uniform onset

flow. The location is typical of an engine-pylon intersection on a trans-

port aircraft. These velocities must be accurately predicted to determine

flow interference effects. The data in figure 6 were taken from reference S.

The configuration is a wing-body having a diameter-to-span ratio of 0.15 and

a 45 ° swept, flat, uncambered wing of aspect ratio 4. Wing thickness effects

were removed by subtracting from the velocities at CL = 0.49 the appropriate

velocities at CL = 0. The predicted curves were obtained by neglecting any

body effects and fitting the wing with a uniform spacing of 4 chordwise rows

and 19 spanwise rows of horseshoe vortices. The abscissa represents distance

aft of the section leading edge, as a fraction of the section chord. The

agreement between theory and experiment is quite good and is representative

of the results obtained at all locations examined except those close to the

underside of the wing, where the peaks in wash velocities near the leading

edge tend to be overpredicted. These results verify the capability of the

vortex lattice method to predict off-wing velocities with sufficient accuracy

to obtain proper interference effects.

It is interesting to note from figure 6 that relatively high sidewash

angles are indicated in the region where an engine and pylon would be located.

The pylon interference could be nearly eliminated by toe-in, twist, and camber

of the pylon to make its mean surface conform to the wing-alone streamlines.

However, the pylon would be matched to the local flow at only one angle of

attack, and interference would still exist at other wing angles of attack.
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The second set of results, figure 7, shows the spanwise variation of the

additional span load coefficients for a swept wing with relatively large,

swept forward pylons. Since there are few data available for loadings on

wing-pylon combinations, a comparison is shown with theoretical results

obtained by Blackwell (ref. 6). The Blackwell theory replaces the wing and

pylons with a distribution of rectangular horseshoe vortices of uniform width

with their bound legs located at the section quarter chord. With this

approach, spanwise variations of loading can be predicted, but no chordwise

loading distributions can be obtained because only one chordwise vortex is

used. The Blackwell results in figure 7 were obtained using I chordwise by

40 spanwise vortices on the wing and I by 8 on the pylon, whereas the non-

planar vortex lattice results were obtained using 4 chordwise by 20 spanwise

on the wing and 4 by 2 on the pylon. The results in figure 7 illustrate

excellent agreement between the two theories, with the Blackwell theory show-

ing a slightly larger discontinuity in loading across the pylon than the

nonplanar vortex lattice method.

The third set of results Cfigs. 8 and 9) illustrates the importance of

the various interference effects on the C-5A wing at a Mach number of 0.7

with only the outboard engines and pylons present. The pylons are swept for-

ward about 70 ° , have a span of 0.15 of the local wing chord, and are toed in

1° . The engines have a negative incidence with respect to the wing root

chord of 4.5 ° . The results shown are spanwise variation of dimensionless

section lift coefficient for zero wing angle of attack (fig. 8) and the addi-

tional loading at 4 ° angle of attack, which approximates a cruise angle of

attack. The results were obtained using 20 spanwise and 4 chordwise rows of

vortices on the wing semispan and 2 spanwise by 4 chordwise rows on the pylon.

For the zero angle case, figure 8 shows that the wing-alone and

wing-pylon results are very similar. The small discontinuity in loading at

the pylon is due primarily to the toe-in angle of the pylon. The addition

of the engine with its negative incidence causes an upwash over the wing

which increases the section lift coefficients in the region of the pylon.

For the additional loading, figure 9 indicates that the addition of a

pylon to the wing produces a discontinuity in loading at the pylon which is

larger than that for the zero angle case because of the wing-induced side-

wash over the pylon. The engine at positive angle of attack induces a down-

wash over the wing which decreases the wing section lift coefficients in the

region of the pylon.

The total section lift at 4° angle of attack is the sum of the zero

angle and additional loading curves given in figures 8 and 9. For the wing-

pylon, it is of interest to note that the toe-in effect shown in figure 8

compensates in part for the pylon-induced interference due to additional

loading, thereby reducing the overall pylon-induced interference. For the

wing-pylon-engine combination, the pylon-engine induced effects for zero

angle and additional loading tend largely to cancel because of the negative

engine incidence angle, leaving little net interference at this angle of

attack. At higher angles of attack, the interference effects associated with

the additional loading would dominate.
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The final set of results, figure I0, illustrates a comparison between

predicted and measured section lift coefficients at two span stations on the

C-SA. These unpublished data were obtained at the Langley Research Center on

an 0.057 scale model with inboard engines and pylons removed. The tests are

similar to those of reference 1 and make use of the same engine model. For

the inboard station (q = 0.365), where the inboard engine would normally be

located, the theory and data are in good agreement. For the outboard engine

station, the theory and data are in reasonable agreement, although the theo-

retical lift-curve slope for the section just inboard of the pylon appears

somewhat low. Both the theory and data show the station inboard of the pylon

to have a higher lift-curve slope than the outboard station. The wing

exhibits an extensive region of supersonic flow at aw = 8.5 ° , and the theory

would not necessarily be expected to agree with the data at this angle.

CONCLUDING REMARKS

A method of analysis has been developed for analyzing the aerodynamic

interference effects associated with a wing-pylon-engine configuration

typical of a modern high-speed transport aircraft. In order to perform the

analysis, it was necessary to develop a new nonplanar lifting surface method

yielding chordwise loading distributions and a new high-bypass-ratio turbofan

engine model describing the engine and wake flow characteristics important to

the interference problem. Comparisons of the methods with wing-alone, wing-

pylon, and wing-pylon-engine data and other theories indicate good agreement.

To date, the methods have been applied only to the C-5A configuration

with one engine-pylon per wing panel. The methods include prediction of

chordwise pressure distribution on the wing, pylon, and fan cowl, although
no comparisons with such data have been made to date. The methods can be

readily extended to include multiple engines per panel and pylons with cam-

ber and twist. Through use of the methods, parameters can be examined such

as axial and vertical location of the engine relative to the wing, engine

incidence relative to the wing, pylon incidence, camber and twist, and

spacing of two engines along the span.
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WING-PYLON-ENGINE INTERFERENCE
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• CRITICAL MACH NUMBER

Figure t
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COMPARISON WITH BLACKWELL THEORY FOR WING-PYLON
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INTERFERENCE BUILD-UP ON C-5A WING
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_ DISCUSSION

STEPHEN STARCH, Boeing Co., Wichita: How do you handle compressibility?

SPANGLER: We use a Prandtl-Glauert transformation and stretch the x

coordinates on the wing and pylon.

TED DANSBY, Lockheed-Georgia Co.: On your nacelle model, did you try

putting the vortex plates around, rather than an image system like you used?

In other words, put vortex plates all around the cylinder that you used to

simulate your nacelle.

SPANGLER: I am not sure what you mean by vortex plates.

DANSBY: Well, I mean a series of plates, that is, a plate with a bound

vortex (lattice network).

SPANGLER: Are you thinking now of the slide I showed with the infinite

cylinder?

DANSBY: Yes.

SPANGLER: This was done just for purposes of modifying the load

distribution on the pylon due to the presence of the engine. Now, when the

engine model is calculated, then we do have ring vortices

DANSBY: Yes. I realize that, but I was wondering about the effect on

the wing. In other words, you iterate. We have about the same approach, but

we do not iterate. We describe the engine by using a series of these plates or

lattice arrangements. Some of our results are quite consistent wit_ yours.

But I was wondering whether you actually tried the image versus the plate,

SPANGLER: Well, we do consider the interference effect induced by the

engine on both the pylon and the wing. We take our engine loading, which has

interference in it due to the wing and the pylon, and then compute the

induced velocities on both the pylon and the wing to obtain the engine-induced

interference. It's important that all of the boundary conditions for each of

the various models which are added up to get the interference effects are all

satisfied properly.

DANSBY: One more. Why do you.iterate? Couldn't you combine this all

into one large matrix?

SPANGLER: Yes, you could, if you had a big enough computer.

DANSBY: We have the same problem.

Oh, and one other thing. Of course, you will extend this to the case of

thickness of the pylon?
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SPANGLER: Yes. I didn't mention this in the talk. Just recently, in

order to get pressure distributions, we have taken the mean-surface loadings,

which give the discontinuous part of the loading on both the pylon and the

wing, and added in the cOntinuous velocities and profile thickness effects on

both the pylon and the wing. This approach gives us a continuous chordwise

pressure distribution on the pylon and the wing including thickness effects.

DANSBY: What was the incremental effect of power? Had you evaluated

that separately? ...........

SPANGLER: No, I can't tell you. We did not evaluate that separately.

JACK N. NIELSEN, Nielsen Engineering and Research, Inc.: I think it is

true that there are many ways in which you can satisfy the boundary conditions

on the engine. One of them is to place singularities on the surface of the

engine. Another one is to place them on the axis. Now, I think the way we

did it is still a third way. Even though we didn't satisfy the boundary con-

ditions precisely by the vortex image system, we can still take the residue

and throw it in with the interference velocities and cancel the sum, so that

with our image system precise solution is possible.

I agree that iteration is unnecessary. It is a question of computer

size and how many simultaneous equations you want to put into your matrix.

BRADFORD H. WICK, NASA, Ames Research Center: I would like to ask Mr.

Joseph P. Giesing how did you like the location of his control point,
75 percent?

JOSEPH P. GIESING, Douglas Aircraft Co.: That's pretty well established.

There has been no question as far as the vortex lattice method is concerned

as to where to put the control point, in my estimation. This location is

well established by two-dimensional analysis.

I would like to say that we have compared putting plates on a fuselage

or some sort of body attached to a lifting surface and compared it to the

image system approach which we also have had implemented. There does seem to

be just a slight discrepancy right at the wing-fuselage intersection.

We also tried simulating a symmetry plane by putting a large number

of vortices on a plane wall and attaching a wing to it. The loading always

came out lower than the symmetry loading, which would be an exact solution.

We found the same results when we attached a lifting surface to a fuselage

with vortex elements on it. So I do believe that this relatively simple

image system works out fairly well, especially if you couple it with an axial

singularity system to take care of the residue that is left over from the

image system.

I would also like to comment on your statement that "there are no other

nonplanar methods." I'd like to call your attention to Albano and Rodden.

Although their method is called unsteady double lattice_ you can always set

the frequency to zero, and it is a steady nonplanar methed. Also some

work in Russia by Belotserkovskii uses the vortex lattic system for nonplanar
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configurations, and there are a lot of other planar type methods around. I

am sure you are familiar with them.

NIELSEN: I just have one more comment. You have infinite sidewash and

downwash around the tip of the pylon, and by putting the vortex images in,

you get rid of that singularity. This is hard to do if you just use surface

distributions. So I think the image approach is a simple way of doing it,

which is better than just pure surface distributions.

ATLEE M. CUNNINGHAM, JR., General Dynamics, Fort Worth Div.: I didn't

quite understand, when you were talking about the ring vortices, whether or

not you account for circumferential variation in these and, if you do, how

do you do it?

SPANGLER: We have two types of vortex rings. One is an axisymmetric

ring which takes account only of the axisymmetric velocities induced through

the duct surface by the wake cylinders, which are axisymmetric, and the

V cos e, which is also axisymmetric.

The second type of ring has a cosine variation around the periphery,

and this is the kind of ring you need to cancel a uniform crossflow across

the duct. We have one harmonic, in essence, in the nonaxisymmetric ring

distributions.

CUNNINGHAM: Does this work well whenever your nacelle gets very, very

close to the wing?

SPANGLER: No. It, of course, gets worse as you bring the wing and the

engine together. Now, in our method we average the upwash distribution over

the length of the fan duct chord and over the length of the engine duct chord

and treat them separately. To the extent that the upwash distribution varies

considerably over either of these lengths then the engine vorticity model

really should be more complex.

However, the engine effects on the wing loading for a C-SA configuration

are fairly small, so I think for the configuration we have we are doing a

pretty good job on modeling the interference effects. Now, if you bring the

engine up closer to the wing, you will have to take more harmonics into
effect.
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THE ANALYSIS OF PROPELLER-WING FLOW INTERACTION

By Antony Jameson

Grumman Aircraft Engineering Corp.

SUMMARY N70:21382

Theoretical methods are developed for calculating the interaction of a

wing both with a circular slipstream and with a wide slipstream such as might

be produced if the slipstreams of several propellers merged. To simplify the

analysis rectangular and elliptic jets are used as models for wide slipstreams.

Standard imaging techniques are used to develop a lifting surface theory for a

static wing in a rectangular jet. The effect of forward speed is analyzed for

a lifting line in an elliptic jet, and a closed form solution is found in the

case when the wing just spans the foci of the ellipse. A continuous wide jet

is found to provide a substantially greater augmentation of lift than multiple

separate jets because of the elimination of edge effects at the gaps. Calcu-

lations based on these methods show good correlation with experimental data for

wings without flaps, but deflection of flaps seems to result in a greater

turning effectiveness than might be expected from the theory.

INTRODUCTION

The need for V/STOL aircraft to relieve air traffic congestion is

becoming increasingly apparent. Interest therefore has been renewed in pre-

dicting the influence of propeller-wing flow interaction on the aerodynamic

characteristics of deflected slipstream and tilt wing aircraft.

The lift of a wing spanning a single circular slipstream has been quite

extensively studied. Early investigators used lifting line theory (refs. I,

2). Later slender body theory was introduced to treat the case when the

aspect ratio of the immersed part of the wing is small (refs. 3, 4). Neither
of these theories agreed well with experimental results. Lifting surface

theories were developed by Rethorst (ref. 5), using an analytical approach,

and Ribner and Ellis (ref. 6), using a numerical approach. These give better

agreement at the expense of lengthy computations. 0nly Sowydra (ref. 7) has

attempted to allow for the deflection of the slipstream boundary.

Rethorst's method has been extended to treat approximately a wing in

several separate slipstreams (ref. 8). None of these investigations, however,

has allowed for the possibility of the slipstreams from several propellers

merging to form a single wide jet. It can be expected that the elimination

of the gaps would lead to an increase in efficiency by allowing the circula-

tion to be maintained continuously across the span. Studies of wide jets

were initiated by De Young (ref. 9), and have been continued by the present

author. Results of calculations both for circular slipstreams from isolated

propellers and for wide slipstreams are presented in this paper.
L
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FCRMULATION

The general case to be considered is a wing in a slipstream generated by

one or more propellers with an external flow due to forward motion of the

wing. The following simplifications are made:

(i) The fluid is inviscid and incompressible.

(2) Rotation in the slipstream is ignored and it is treated as a

uniform jet.

(3) The jet boundary is assumed to extend back in a parallel direction.

Under these assumptions the perturbation velocity due to the wing can be

represented as the gradient of a velocity potential which satisfies Laplace's

equation (fig. i). At the boundary it is necessary to maintain continuity of

both pressure and the transverse flow angle. Let Vj and Vo be the undis-
turbed velocities in the slipstream and the external flow. Then if

Bernoulli's equation is linearized, the boundary conditions can be expressed

as

_j _o
_-_= _--K- (2)

where _j is the interior potential, _o is the exterior potential, and
is the velocity ratio

V o
= _ (3)

vj

ANALYTIC METHODS

To restrict the complexity of the calculations it is desirable to use

the simplest possible analytical models. Two models of wide slipstreams have

been found to be amenable to analysis. In the first the slipstream is repre-

sented as a rectangular jet. A lifting surface theory can then be developed

which is exact only in the static case. In the second the slipstream is repre-

sented by an elliptic jet. A quite simple lifting line theory can then be

developed which is valid for the entire speed range. A simplified lifting

surface theory for a circular slipstream can also be developed with the aid

of calculations for a square jet. _i:_

Lifting Surface Theory for a Rectangular Jet

In the static case (Vo = O) only the first boundary condition (i)

remains tO be Satisfied. A rectangular jet can then be treated by the method

of images as in the theory for an open wind tunnel (ref. i0). Since the wing
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is large compared with the jet, it is necessary to allow for the

nonuniformity of the additional downwash due to the jet boundary. When the

wing spans the jet, the influence of the jet dimensions can be conveniently

represented by the single parameter jet aspect ratio

B
ARj = _ (4)

where B and H are the jet width and height.

The wing is represented by a distribution of horseshoe vortices (fig. 2).

For each horseshoe vortex the boundary condition can be satisfied over the

whole jet surface in three dimensions by introducing a doubly infinite set of

images into a lattice formed by extending the rectangle containing the jet

(fig. 3). The images thus give the correct longitudinal variation of the

downwash, and a lifting surface theory can be developed. It is expedient to

use Weissinger's simplified method in which the bound vorticity is concen-

trated at the 1/4 chord line, and the boundary condition that the flow must

be tangential to the surface is satisfied only at the 3/4 chord line. If a

finite number of vortices are used to represent the wing, the determination

of the lift can be reduced to the solution of a set of algebraic equations.

The downwash angle at the nth spanwise control point due to unit circulation

at the mth spanwise station can be represented as an influence coefficient

Anm + Rnm , where Anm is the contribution of the original vortex and Rnm

is the contribution of the images. If Fm is the circulation at the mth

station, the total induced angle at the nth control point is then

an = [ (Anm + Rnm) rm (s)

When one applies the boundary condition that the induced angle must equal the

wing surface angle, equation (5) becomes a set of equations for the
circulation.

It is convenient to distribute the horseshoe vortices so that their

lateral limits are at the span fractions cos[(2m-l)_/2N] and their strengths

represent the circulation at the points cos(mr/n). This permits previously

developed methods (ref. ii) to be used for determining the free-stream influ-

ence coefficients Anm. The interference influence coefficients Rnm have

then each to be determined by summing a double series. The summation can be

simplified by evaluating the interference downwash Wjo and its slope

dwj/dx at the 1/4 chord line and using the approximation

wj : Wjo {1 + x }
/[Wjo/(dwj/dx)]2 + x 2

(6)

When the aircraft has a forward speed, it is unfortunately not possible

to satisfy the two boundary conditions (I) and (2) by introducing images.

Fhe effect of forward speed may be treated approximately, however, by
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multiplying the interference downwash distribution and therefore the

influence coefficients Rnm in equation (5) by a scalar strength factor P.

The correct answers are obtained for the static case and the free stream by

setting P = 1 and P = 0 at these limits. At intermediate velocity ratios,

it appears from an examination of the results of lifting line theory for an

elliptic jet that a suitable strength factor is

p i - p2- (7)
1 + ARjp 2

Lifting Line Theory for an Elliptic Jet

For the purpose of developing a lifting line theory a single horseshoe

vortex may be resolved into a pair of infinite line vortices and an anti-

symmetric pair of horseshoe vortices (fig. 4). The antisymmetric part pro-

duces no downwash at the lifting line, and it is therefore only necessary to

represent the two-dimensional part of the potential. Let Cv represent the

potential of a vortex distribution in the absence of the jet boundary, and

let A_j and 4¢0 be the interior and exterior perturbation potentials due to
the boundary, so that

Cj = Cv + ACj (8)

¢o = ¢v + 4¢0 (9)

These potentials can be .represented as series

CV : [ Ane-n_ sin nn (10)

ACj = [ Bn sinh n_ sin nn (ii)

he 0 : [ Cn e-n_ sin nn (12)

where _ and n are elliptic coordinates

y + iz : a cosh(_ + in) (13)

and the boundary is at _ = _o (fig. 5). Then introducing the boundary condi-

tions (i) and (2), and equating coefficients, it is possible to solve for

Bn and Cn in terms of An as

Bn = _ 1 - p2 2A n (14)

1 + p2Fn(t ) [(1 + 1)/(t - 1)] n - 1

(1 - p)[1 - PFn(X)]

Cn : - An (15)

1 + p2Fn(l )
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where the ratio of width to height of the ellipse is

X = coth Eo

and

(16)

Fn(X) = coth nE o = [(% + l)l(X - I)] n + 1

[(X + l)/(X - I)] n - i

(17)

For a pair of vortices at (El, ql) and (El, -n l) Tani and Sanuki (ref. 12)
found that

2
= -- cosh nEl cos nql (18)An _n

The influence of forward speed on the interior potential is represented by the

factor (i _2)/[I + _2Fn(%)] which reduces to (i - _2)/(i + Xp2) for the
first term.

When the wing extends exactly between the foci of the ellipse (fig. 6),

a simple closed form solution can be obtained. The first term of the series

represents a uniform downwash between the foci, and thus for a wing with an

elliptic lift distribution only this term remains. For a given lift the

effect of the jet is then simply to increase the induced downwash by the
factor

_.+ _12
(19)

The wing thus behaves as if its aspect ratio were divided by this factor.

This is a generalization of a result obtained by Glauert (ref. 13) for open
wind tunnels.

It is also possible to develop a slender-body theory for a wing in an

elliptic jet (ref. 14). An extension to a lifting surface theory would

require the representation of the antisymmetric part of the potential as an

expansion in Mathieu functions.

Approximate Lifting Surface Theory For Circular Jets

For a circular jet the two-dimensional part of the interference

potential due to a horseshoe vortex can be represented by images at the

inverse points. The antisymmetric part can be represented as an expansion in

Bessel functions (ref. 5). The results of wind-tunnel theory, however, indi-

cate that the ratio of the slope of the downwash to the downwash at the load

line is nearly the same for circular and square jets. Thus the slope can be

approximated by multiplying the downwash at the load line for the circular

jet by the ratio for the square jet. Then the longitudinal variation of

downwash can be estimated by equation (6). Thus the need to determine the

antisymmetric potential is obviated and the calculations can be simplified.
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Results of Computer Calculations

Calculations for rectangular wings spanning rectangular jets have been

made by computer, using 8 vortices per semispan to represent the wing.

Typical results are shown in figures 7 to 9.

Figure 7 shows the effect of jet aspect ratio on lift and induced drag

over the speed range for wings of aspect ratio 2 and 4. Forward speed is

represented by the velocity ratio _. In order to obtain meaningful values

in the static case the lift and drag coefficients are referred to the jet

velocity. With this convention the lift slope decreases as _ decreases

because of the reduction in the external flow. Also for a given lift the

induced drag increases. The wing is assumed to span the jet so that an

increase in jet aspect ratio represents a decrease in jet height. It can be

seen that the jet effects are accentuated as the jet becomes shallower.

When the angle of attack a is small and the aircraft is static, the jet

deflection angle @ equals the ratio of lift to thrust. Figure 8 shows the

static turning effectiveness @/a = La/T. For a given jet aspect ratio the

turning effectiveness increases toward a limiting value as the wing chord is

increased or its aspect ratio reduced. There is not much of a fall-off from

this limiting value until AR > ARj, or the wing chord is less than the jet

height. The turning effectiveness also increases as the jet aspect ratio is

increased and the jet becomes shallower: it is easier to deflect a flow

which is close to the wing.

Figure 9 illustrates the influence which these trends could have on a

design. The static performance of a wing in a large square jet is compared

with its performance in a single wide jet of aspect ratio 4. In the large jet

La/T = 0.365. In the wide'jet it is increased to 0.835. Since the disc load-

ing of the wide jet is four times that of the large jet, the thrust for a

given power input would be reduced. According to ideal actuator theory it

would be a fraction (1/4)I/3 = 0.630 of the thrust of the large jet. Despite

this the lift in the wide shallow jet would still be greater. It thus appears

that it might well be advantageous to use several small propellers of high

disc loading on each semispan, provided they could be placed close enough for

their slipstreams to merge without incurring too large a loss of efficiency.

USE OF APPARENT MASS ARGUMENTS TO DERIVE SIMPLE APPROXIMATE FORMULAS

The form of the solution for a wing spanning the foci of a elliptic jet

suggests a general approach to obtaining quick approximate answers. In a

free stream an elliptic wing acts as if it deflected an apparent mass equal

to that captured by a circle containing its tips through a uniform downwash

angle. In a jet the reduction in the exterior velocity below the jet veloc-

ity causes the wing to encounter a smaller mass flow, so it can be expected

to deflect a smaller apparent mass through a larger downwash angle. This is

equivalent to a reduction in the effective aspect ratio from AR to

AR

l+p
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where p is the fractional increase in downwash. Then according to lifting

line theory the ratio of the lift slope to the lift slope in a free stream

would be

Chaff 2z/[l + (2/AR)] AR + 2

CL_ 1 2_/II + [2(1 + p)/AR]} AR + 2(1 + p)

It has been found that the results of detailed calculations for

rectangular wings just spanning the slipstream can in fact be closely approxi-

mated by formulas of this type. If the free stream, the static case, and

intermediate velocity ratios are denoted by subscripts 0, i, and _, the

following formulas may be used for rectangular jets:

CLa
O

CL_ I

AR+2

AR + 2ARj + [2.5/(1 + AR)]

(20)

Also if

CL_I 1 + [(CL_I/CLao ) - 1][(1 - V2)/(1 + ARjv2)]

r denotes the induced drag factor CD/CL 2

(211

r

__o = 0.76(ARj + e'ARj) + 0.53 (22)
rl

r____= (ro/r I) + [i + ARj - (ro/rl)]_ 2

rl 1 + ARj_ 2

(23)

These formulas are valid in the range AR > (I/2)ARj, or wing chord less than

twice the jet height. Similarly, for a rectangular wing spanning a circular

jet the following formulas closely approximate the results of detailed
calculations:

CLa
O

CLa I

CL_

AR + 2

----= AR + 3.54 (24)

CLa I
i + [(CLal/CL_ o) - i][(i - _2)/(i + _2)]

(25)
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r

o = 1.68 (26)
rl

r
= 1.68 + 0.32_ 2 (27)

rl
1 + _2

PREDICTION OF CHARACTERISTICS OF PRACTICAL CONFIGURATIONS

In order to estimate the lift of a propeller-wing combination at an

angle of attack it is necessary to allow for the direct contribution of the

propeller thrust, the propeller normal force due to the inclined inflow, and
the change in the wing lift due to the propeller. The propeller slipstream

has three principal effects on the wing: it increases the dynamic pressure,
it alters the angle of attack, and it decreases the lift slope. All three

effects must be estimated. The preceding analysis yields an insight into

the last effect, but strictly only applies to wings completely contained in

a jet. Assuming that the effect of a jet is small on the part of the wing

outside the jet, it is, however, possible to make an estimate by using

superposition. The increase in lift of the blown part of the wing, treated

as if it were an independent planform, is added to the lift of the whole

wing in a free stream. Along these lines a practical method has been

developed for quick estimation of the characteristics of propeller-wing

combinations, which gives good correlation with published experimental data.

Two examples are shown in figures i0 and ii. All the aerodynamic coefficients

are referred to the slipstream velocity, so that the static case is repre-
sented by CT = 1.0, and the lift coefficient decreases as the thrust coeffi-

cient increases and the velocity ratio decreases. The profile drag was not

calculated, so that the theoretical drag curves should be to the left of the

experimental points. At high thrust coeffcients the apparent profile drag

coefficient is reduced because the drag coefficient of sections outside the

slipstream is referred to the higher velocity in the slipstream. It should

also be noted that rotation of the slipstream has been ignored. Provided that

the wing completely spans the jet, the increase in angle of attack on one side

of the jet should be compensated by the decrease on the other side, so the

total lift should be about the same, although its distribution is altered.

DIVERGENCE BETWEEN THEORY AND OBSERVED DEFLECTION

OF SLIPSTREAMS BY FLAPS

An exact calculation by potential theory of the lift of flapped wings

would require the use of a model with multiple lifting lines. If, however,

the effect of deflecting flaps through an angle 6 is regarded as equivalent

to an increase in the effective wing angle of attack e, the present method

may be used, given suitable information about the effect of the jet on the
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flap effectiveness _/6. Tests have generally been made of wings with

propellers attached to them, so that the angle of attack of the wing in the jet

was fixed, and only the flap angle was varied. As a result the flap effec-
tiveness cannot be directly determined, but if theoretical values of
are assumed for the wing, it is possible to impute values of _/6. CL_

In the static case the jet deflection angle @ is a convenient measure

of performance. It has been shown that the turning effectiveness @/a of a

wing is close to a limiting value for a wing of infinite chord when the chord

is about equal to the jet height (fig. 7). This limiting value is plotted as

a function of jet aspect ratio in figure 12. It is less than unity because

of edge effects illustrated in figure 13. The absence of a pressure differ-

ential at the jet boundary causes an inward spanwise pressure gradient above

the wing and an outward gradient below it, so that the streamlines in the

cross plane converge above the wing and diverge below it. The average down-

wash is less than the downwash in the plane of the wing, and the jet deflec-

tion angle is therefore less than the wing angle of attack. As the jet width

is increased, the edge effects become less important, and the maximum turning

effectiveness @/a for an infinitely wide jet is predicted to be unity in

agreement with the Coanda effect. For a circular jet the limiting turning

effectiveness of a wing of large chord is found by slender-body theory
(ref. 3) to be

O/cxmax = 1 (4/_ 2) = 0.595

For a pair of propellers producing a wide slipstream figure 12 indicates that

the limiting turning ratio should be about 0.73.

Figure 24 is taken from Kuhn's summary of the results of tests of

propeller-wing-flap combinations (ref. 15). It shows the turning effective-

ness of flaps measured in static tests as a function of flap chord. Fig-

ures 15 and 16 show the results of several series of tests in greater detail.

It can be seen that for some flap configurations @/6 has been measured to

be as high as 0.75. If the theoretical maximum value of @/a is substituted
in the relation

o/_ = {o/_}{_/_}

these results indicate values of a/6 close to or even greater than unity.

The value imputed by the theory to O/amax depends on the application of

the boundary condition without regard for jet deflection and distortion,

Nevertheless, the edge effects should prevent a jet from being deflected

through the full wing angle of attack. Assuming, therefore, that the theory

is not grossly underpredicting the turning effectiveness of a complete wing,

it appears that the flap effectiveness must be substantially greater in a jet

than in a free stream. In fact the result'of slender-body theory that the

trailing-edge deflection angle is equivalent to wing angle of attack may be
close to the truth.
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CONCLUSION

The methods described in this paper provide a basis for engineering

calculations which show good correlation with published experimental data for

wings without flaps. In the light of the theory the jet deflection angles

measured in tests of flapped wings are surprisingly large. There is a need

for tests in which the jet producing device is removed from the wing so that

the effect of changing the wing and flap angles can be measured separately

to give an exact value of flap effectiveness. It would also lead to a better

insight into the problem if the final shape and location of the jet could be

determined. If jet distortion and deflection have an important influence on

the interaction, it would be possible to allow for their effect by represent-

ing the slipstream boundary by a freely convecting vortex layer, and using a

direct numerical approach, but massive computations would be needed to carry

it through.
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WING IN A WIDE SLIPSTREAM
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IMAGES FOR A HORSESHOE VORTEX
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VORTEX PAIR IN AN ELLIPTIC SLIPSTREAM
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Figure 5
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OPERATIONAL CURVES FOR A RECTANGULAR WING
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TURNING EFFECTIVENESS OF RECTANGULAR

WINGS IN STATIC JETS
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CORRELATION WITH TN-D3375
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FLOW IN THE CROSS PLANE OF A JET

OVER A WING
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VARIATION OF TURNING ANGLE WITH THE RATIO OF TOTAL
FLAP CHORD TO PROPELLER DIAMETER FOR VARIOUS FLAP

CONFIGURATIONS IN HOVERING OUT OF GROUND-EFFECT REGION
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DISCUSSION

ELY S. LEVINSKY, Air Vehicle Corp.: Is the propeller slipstream tilted

or untilted when the wing is tilted?

JAMESON: In the correlations I showed you, the propeller was fixed to

the wing so they were tilted together. When there is a forward speed, of

course, there would be some variation between the tilt of the slipstream and

the wing, because of the interaction with the external flow, but statically

the wing has a fixed angle of attack in the slipstream.

LEVINSKY: Well, at forward speed does the theory account for tilt of the

propellers?

JAMESON: Well, this is one of the problems in the correlation. With

this theory we are attempting to concentrate on the slipstream-wing interac-

tion, but in order to correlate with available experiments, you are obliged to

estimate the normal force of the propeller and the angle of the flow behind it.

Therefore, when I showed you the correlation up there for that configuration,

there was a procedure for estimating these. I would be happier to have tests
in which you could separate all these factors. I think it would be easier to

pin down whether you are really getting a good agreement or not.

LEVINSKY: I might mention that awhile back Air Vehicle Corp. had done

some work in this area under Army sponsorship. We treated the propeller-

slipstream-wing interaction using essentially Ribner's method that you men-

tioned. Professor Hans Thomann, who participated in the program, developed

an inclined actuator disk theory which was incorporated into the method so we

could treat inclined propellers and wing angle of attack. We dealt with one,

two and four propellers, but their slipstreams were separated, not merged,

like you treated. Also, we included effects of slipstream rotation.

But I am in complete accord with you on the matter of test data. We got

into the problem where we didn't really have adequate test data with which to

evaluate the theory, and it was left at that. I might mention there are some

very nice test data that were obtained by Stuper in Germany in 1938 (NACA

TM-874). We have a hard time locating any better test data.

JAMESON: Yes, I agree with you completely. I think Stuper's tests are
the sort of thing we would like to see renewed.

LEVINSKY: Because he did take out the swirl.

JAMESON: Yes, I know.

LEVINSKY: One further question. One of your slides showed a sharp

corner on it, in the theory. This was when you looked at CL versus a, and

I was wondering . . .

JAMESON: Oh, yes, I am sorry about that. In the practical method -

slide 12, please. I really ought to have deleted that. When dealing with
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this practical correlation, I introduced an allowance for stall angle which is

empirical. That has really nothing to do with the theory, but in trying to

carry large angles of attack, you may get the wing outside the slipstream

stalled and the wing inside the slipstream not stalled, so in order to carry

it through, you've got to do something about estimating the stall. But that

is not a theoretical stall estimate.

DAVID BEVAN, Boeing Company, Vertol Div.: First of all, let me say that

you seem to have done very well with a very difficult subject, and after look-

ing at perhaps 14 years of wind-tunnel data from Langley, we at Boeing do some

computer work, but we have also spent something like 1,400 hours of wind

tunnel time on this problem this past year, and we are looking forward to

following your results.

It is very difficult to handle the stall problem, which you have drawn

empirically there. As the man from Air Vehicle Corporation said, a propeller

alone is very difficult to calculate and is often calculated wrong. It isn't

that the force contribution is a very large part of the lift; it is that it

suppresses the leading-edge angle of attack.

JAMESON: Yes, exactly.

BEVAN: And between that and the upgoing and outgoing size of the props,

you've got a very difficult wing loading distribution problem. So you cer-

tainly are embarked on a very difficult course.

JAMESON: Yes. I would like to have a simple test of a wing in two flows

and see if we can agree with that as a first step.
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